Abstract
The global sustainability challenges facing the world are complex and involve multiple interdependent areas. Chapter “Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate” focuses on sustainable nanotechnology solutions for a clean environment, water resources, food supply, mineral resources, green manufacturing, habitat, transportation, climate change, and biodiversity. It also discusses nanotechnology-based energy solutions in terms of their interdependence with other sustainability target areas such as water, habitat, transportation, and climate change. Chapter “Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation” is dedicated to energy resources.
Keywords
- Nanomaterials
- Water filtration
- Clean environment
- Food and agricultural systems
- Minerals
- Climate change
- Transportation
- Biodiversity
- Green manufacturing
- Geoengineering
- International perspective
* With contributions from: André Nel, Mark Shannon, Nora Savage, Norman Scott, James Murday.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
H. Brundtland, Towards sustainable development. (Chapter 2 in A/42/427). Our common Future: Report of the World Commission on Environment and Development (1987), Available online: http://www.un-documents.net/ocf-02.htm
D.J. Rapport, Sustainability science: an ecohealth perspective. Sustain. Sci. 2, 77–84 (2007)
M.C. Roco, From vision to the implementation of the U.S. National Nanotechnology Initiative. J. Nanopart. Res. 3(1), 5–11 (2001)
M.C. Roco, Broader societal issues of nanotechnology. J. Nanopart. Res. 5, 181–189 (2003)
J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J.A. Foley, A safe operating space for humanity. Nature 461, 472–475 (2009)
U.S. Census Bureau, World POPClock Projection (2010), Available online: http://www.census.gov/ipc/www/popclockworld.html
M.A. Shannon, Net energy and clean water from wastewater. ARPA-E Workshop (2010), Available online: http://arpae.energy.gov/ConferencesEvents/PastWorkshops/Wastewater.aspx
United Nations Environment Programme (UNEP), Challenges to International Waters—Regional Assessments in a Global Perspective (UNEP, Nairobi, 2006)
Committee on Critical Mineral Impacts of the U.S. Economy, Committee on Earth Resources, National Research Council, Minerals, Critical Minerals, and the U.S. Economy (National Academies Press, Washington, 2008). ISBN 0-309-11283-4
T. Hillie, M. Munshinghe, M. Hlope, Y. Deraniyagala, n.d. Nanotechnology, water, and development, Available online: http://www.merid.org/nano/waterpaper
Organisation for Economic Co-operation and Development (OECD), Global challenges: nanotechnology and water (2008). Report of an OECD workshop on exposure assessment. Series on the safety of nanomanufactured materials #13 (2008), DSTI/STP/NANO(2008) 14
N. Savage, M. Diallo, Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7, 331–342 (2005)
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, M.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)
A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filters. Nat. Mater. 3(9), 610–614 (2004)
B.H. Jeong, E.M.V. Hoek, Y. Yan, X. Huang, A. Subramani, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007)
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)
M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson Jr., W.A. Goddard III, Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2 PAMAM dendrimers with ethylene diamine core. Environ. Sci. Technol. 39(5), 1366–1377 (2005)
M.S. Diallo, Water treatment by dendrimer enhanced filtration. U.S. Patent 7,470,369, 30 Dec 2008
S.J. Kim, S.H. Ko, K.H. Kang, J.Y. Han, Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297–301 (2010)
U.S. Department of Agriculture, Economic Research Service (USDA-ERS), Table 1 – Food and alcoholic beverages: total expenditures (2009), Available online: http://www.ers.usda.gov/briefing/CPIFoodAndExpenditures/Data/Expenditures_tables/table1.htm
R.L. Scharff, Health-related costs from foodborne illness in the United States (Produce Safety Project, Washington, DC, 2010), Available online: http://www.producesafetyproject.org/media?id=0009
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)
P.R. Srinivas, M. Philbert, T.Q. Vu, Q. Huang, J.K. Kokini, E. Saos, H. Chen, C.M. Petersen, K.E. Friedl, C. McDade-Nguttet, V. Hubbard, P. Starke-Reed, N. Miller, J.M. Betz, J. Dwyer, J. Milner, S.A. Ross, Nanotechnology research: applications to nutritional sciences. J. Nutr. 140, 119–124 (2009), Available online: http://www.foodpolitics.com/wp-content/uploads/NanotechReview.pdf
T. Tarver, Food nanotechnology, a scientific status summary synopsis. Food Technol. 60(11), 22–26 (2006), Available online: http://members.ift.org/IFT/Pubs/FoodTechnology/Archives/ft_1106.htm
House of Lords of the United Kingdom, Nanotechnologies and food (2010). Science and Technology Committee.1st Report of Session 2009–10, Vol. I. HL Paper. 22-I, Available online: http://www.publications.parliament.uk/pa/ld/ldsctech.htm
N.R. Scott, H. Chen, Nanoscale science and engineering for agriculture and food systems. Roadmap report of the national planning workshop (Washington DC, 2003), Available online: http://www.nseafs.cornell.edu/web.roadmap.pdf. Accessed 18–19 Nov 2002
U.S. Department of Energy (DOE), Buildings energy data book (2009), Available online: http://buildingsdatabook.eere.energy.gov
P.A. Torcellini, D.B. Crawley, Understanding zero energy buildings. Am. Soc. Heat. Refriger.Air Cond. Eng. J. 48(9), 62–69 (2006)
Committee on State Practices in Setting Mobile Source Emissions Standards, National Research Council, State and Federal Standards for Mobile-Sources Emissions (National Academies Press, Washington, 2006)
S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation Energy Data Book, 27 ORNL-6981st edn. (Oak Ridge National Laboratory, Oak Ridge, 2008)
U.S. Environmental Protection Agency (EPA), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2006 (EPA, Washington, 2008)
Committee on the Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards, National Research Council., Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (National Academies Press, Washington, 2002)
National Nanotechnology Initiative (NNI), The initiative and its implementation plan (2000), Available online: http://www.nano.gov/html/res/nni2.pdf
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)
J.N. Coleman, U. Khan, Y. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006)
Committee on Technologies for the Mining Industry, Committee on Earth Resources, National Research Council., Evolutionary and Revolutionary Technologies for Mining (National Academies Press, Washington, 2002)
Lux Research, The governing green giants: makers of cleantech nanointermediates on the Lux Innovation Grid. Paper LRNI-R-09-07 (Lux Research Nanomaterials Intelligence service, New York, 2010)
S.L. Gillett, Nanotechnology: clean energy and resources for the future. White paper for the Foresight Institute (2002), Available online: http://www.foresight.org/impact/whitepaper_illos_rev3.pdf
Pacific Northwest National Laboratory (PNNL), SAMMS technical summary (2009), Available online: http://samms.pnl.gov/samms.pdf
K.F. Schmidt, Green nanotechnology: it is easier than you think. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2007)
F. Shadman, Environmental challenges and opportunities in nano-manufacturing. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2006), Available online: http://www.nanotechproject.org/file_download/58
T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761–765 (2002)
T. Zeng, W.-W. Chen, C.M. Cirtiu, A. Moores, G. Song, C.-J. Li, C-J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12, 570–573 (2010)
C.L. Aravinda, S. Cosnier, W. Chen, N.V. Myung, A. Mulchandani, Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosens. Bioelectron. 24, 1451–1455 (2009)
Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)
D.G. Rickerby, M. Morisson, Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mat. 8, 19–24 (2007)
A. Vaseashta, D. Dimova-Malinovska, Nanostructured and nanoscale devices, sensors, and detectors. Sci. Technol. Adv. Mat. 6, 312–318 (2005)
B. Wang, A.P. Cote, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)
P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1(2), 44–48 (2006)
Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39, 1338–1345 (2005)
G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero-valent iron in a water/methanol solution. Environ. Sci. Technol. 38(19), 5208–5216 (2004)
H. Song, E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 39, 6237–6254 (2005)
R.M. Crooks, M.Q. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and application to catalysis. Acc. Chem. Res. 34, 181–190 (2001)
L. Balogh, D.R. Swanson, D.A. Tomalia, G.L. Hagnauer, E.T. McManus, Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 1(1), 18–21 (2001)
E.R. Birnbaum, K.C. Rau, N.N. Sauer, Selective anion binding from water using soluble polymers. Sep. Sci. Technol. 38(2), 389–404 (2003)
M.S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W.A. Goddard, J.H. Johnson, Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20, 2640–2651 (2004)
Intergovernmental Panel on Climate Change (IPCC), in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007)
Intergovernmental Panel on Climate Change (IPCC), in Carbon Dioxide Capture and Storage, ed. by Metz Bert, Davidson Ogunlade, Heleen de Coninck, Loos Manuela, Meyer Leo (Cambridge University Press, Cambridge, 2005)
F.R. Zheng, R.S. Addleman, C. Aardahl, G.E. Fryxell, D.R. Brown, T.S. Zemanian, Amine functionalized nanoporous materials for carbon dioxide (CO2) capture, in Environmental Applications of Nanomaterials, ed. by G.E. Fryxell, G. Cao (Imperial College Press, London, 2007), pp. 285–312
D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework with open metal sites. Proc. Natl. Acad. Sci. U.S.A. 106, 20637–20640 (2009)
R. Banerjee, A. Phan, B. Wang, C.B. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and applications to CO2 capture. Science 319, 939–943 (2008)
A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)
Convention on Biological Diversity (CBD), Sustaining Life on Earth (Secretariat of the Convention on Biological Diversity, Montreal, 2010). ISBN 92-807-1904-1
Global Biodiversity Sub-Committee (GBSC), Nanotechnology and biodiversity: an initial consideration of whether research on the implications of nanotechnology is adequate for meeting aspirations for global biodiversity conservation (2009). Paper GECC GBSC (09)14, Available online: http://www.jncc.gov.uk/page-4628
M.E. Webber, Energy versus water: solving both crises together. Scientific American Earth (October Special Edition) (2008), pp. 34–41
Intergovernmental Panel on Climate Change (IPCC), Climate change and water, in Technical Paper of the Intergovernmental Panel on Climate Change, ed. by B.C. Bates, Z.W. Kundzewicz, S. Wu, J.P. Palutikof (IPCC Secretariat, Geneva, 2008)
A. Aston, China’s rare-earth monopoly. MIT Technology Review (2010), Available online: http://www.technologyreview.com/energy/26538/?p1=A2 15 Oct 2010
C. Hurst, China’s rare earth elements industry: what Can the West Learn (Institute for the Analysis of Global Security, Potomac, 2010), Available online: http://www.iags.org/reports.htm
Advanced Research Projects Agency-Energy (ARPA-E), High energy permanent magnets for hybrid vehicles and alternative energy (2010), Available online: http://arpa-e.energy.gov/ProgramsProjects/BroadFundingAnnouncement/VehicleTechnologies.aspx
J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114(2), 783 (2010)
H. Park, C.D. Vecitis, M.R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113(18), 7935–7945 (2009)
L.A. Silva, S.Y. Ryu, J. Choi, W. Choi, M.R. Hoffmann, Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 112(32), 12069–12073 (2008)
J. Yuan, X. Liu, O. Akbulut, J. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 3, 332–336 (2008)
H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)
Y. Liu, E. Hu, E.A. Khan, Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J. Memb. Sci. 353, 36–40 (2010)
D.W. Keith, Photophoretic levitation of aerosols for geoengineering. Geophy Res Abstr 10, EGU2008-A-11400 (European Geophysical Union, Vienna, 2008a)
D.W. Keith, Photophoretic levitation of stratospheric aerosols for efficient geoengineering. Paper read at Kavli Institute for Theoretical Physics Conference: Frontiers of Climate Science, Santa Barbara, 2008b, Available online: http://online.itp.ucsb.edu/online/climate_c08/keith
D.W. Keith, E. Parson, M.G. Morgan, Research on global sun block needed now. Nature 463, 426–427 (2010)
T. Homer-Dixon, D. Keith, Blocking the sky to save the earth, Op-Ed. New York Times, 19 Sept 2008
YuA Izrael, V.M. Zakharov, N.N. Petrov, A.G. Ryaboshapko, V.N. Ivanov, A.V. Savchenko, AVYuV Andreev, YuA Puzov, B.G. Danelyan, V.P. Kulyapin, Field experiment on studying solar radiation passing through aerosol layers. Russ. Meteorol. Hydrol. 34, 265–274 (2009)
J.J. Blackstock, D.S. Battisti, K. Caldeira, D.M. Eardley, J.I. Katz, D.W. Keith, A.A.N. Patrinos, D.P. Schrag, R.H. Socolow, S.E. Koonin, Climate engineering responses to climate emergencies (2009), Available online: http://arxiv.org/pdf/0907.5140
P.J. Rasch, P.J. Crutzen, D.B. Coleman, Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35, L02809 (2008)
D.W. Keith, Geoengineering the climate: history and prospect. Annu. Rev. Energ. Environ. 25, 245–284 (2000)
E. Teller, L. Wood, R. Hyde, Global warming and ice ages: I. Prospects for physics-based modulation of global change. University of California Research Laboratory Report UCRL-JC-128715 (Lawrence Livermore National Laboratories, Berkeley, Aug 1997)
M.C. Roco, R.S. Williams and P. Alivisatos, Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, IWGN Workshop Report, U.S. National Science and Technology Council, (1999), Washington, D.C. Also published by Springer (previously Kluwer), (2000), Dordrecht. Available on line on http://www.wtec.org/loyola/nano/IWGN.Research.Directions/
S. Kaur, R. Gopal, W.J. Ng, S. Ramakrishna, T. Masuura, Next-Generation Fibrous Media for Water Treatment, MRS Bulletin. 33(1), 21–26 (2008),
Tomalia, D.A., Henderson, S.A. Diallo, M.S. Dendrimers - An Enabling Synthetic Science To Controlled Organic Nanostructures. Chapter 24. Handbook of Nanoscience, Engineering and Technology. 2nd Edition. 2007. Second Edition; Goddard, W.A. III.; Brenner, D.W.; Lyshevski, S.E. and Iafrate, G.J.; Eds.; CRC Press: Boca Raton
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2011 Springer Science+Business B.V.
About this chapter
Cite this chapter
Diallo, M., Brinker, C.J. (2011). Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_6
Download citation
DOI: https://doi.org/10.1007/978-94-007-1168-6_6
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-1167-9
Online ISBN: 978-94-007-1168-6
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)