Advertisement

Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate

  • Mamadou DialloEmail author
  • C. Jeffrey Brinker
Chapter
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)

Abstract

The global sustainability challenges facing the world are complex and involve multiple interdependent areas. Chapter “Nanotechnology for Sustainability: Envi­ron­ment, Water, Food, Minerals, and Climate” focuses on sustainable nanotechnology solutions for a clean environment, water resources, food supply, mineral resources, green manufacturing, habitat, transportation, climate change, and biodiversity. It also discusses nanotechnology-based energy solutions in terms of their interdependence with other sustainability target areas such as water, habitat, transportation, and climate change. Chapter “Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation” is dedicated to energy resources.

Keywords

Nanomaterials Water filtration Clean environment Food and agricultural systems Minerals Climate change Transportation Biodiversity Green manufacturing Geoengineering International perspective 

References

  1. 1.
    H. Brundtland, Towards sustainable development. (Chapter 2 in A/42/427). Our common Future: Report of the World Commission on Environment and Development (1987), Available online: http://www.un-documents.net/ocf-02.htm
  2. 2.
    D.J. Rapport, Sustainability science: an ecohealth perspective. Sustain. Sci. 2, 77–84 (2007)CrossRefGoogle Scholar
  3. 3.
    M.C. Roco, From vision to the implementation of the U.S. National Nanotechnology Initiative. J. Nanopart. Res. 3(1), 5–11 (2001)CrossRefGoogle Scholar
  4. 4.
    M.C. Roco, Broader societal issues of nanotechnology. J. Nanopart. Res. 5, 181–189 (2003)CrossRefGoogle Scholar
  5. 5.
    J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J.A. Foley, A safe operating space for humanity. Nature 461, 472–475 (2009)CrossRefGoogle Scholar
  6. 6.
    U.S. Census Bureau, World POPClock Projection (2010), Available online: http://www.census.gov/ipc/www/popclockworld.html
  7. 7.
    M.A. Shannon, Net energy and clean water from wastewater. ARPA-E Workshop (2010), Available online: http://arpae.energy.gov/ConferencesEvents/PastWorkshops/Wastewater.aspx
  8. 8.
    United Nations Environment Programme (UNEP), Challenges to International Waters—Regional Assessments in a Global Perspective (UNEP, Nairobi, 2006)Google Scholar
  9. 9.
    Committee on Critical Mineral Impacts of the U.S. Economy, Committee on Earth Resources, National Research Council, Minerals, Critical Minerals, and the U.S. Economy (National Academies Press, Washington, 2008). ISBN 0-309-11283-4Google Scholar
  10. 10.
    T. Hillie, M. Munshinghe, M. Hlope, Y. Deraniyagala, n.d. Nanotechnology, water, and development, Available online: http://www.merid.org/nano/waterpaper
  11. 11.
    Organisation for Economic Co-operation and Development (OECD), Global challenges: nanotechnology and water (2008). Report of an OECD workshop on exposure assessment. Series on the safety of nanomanufactured materials #13 (2008), DSTI/STP/NANO(2008) 14Google Scholar
  12. 12.
    N. Savage, M. Diallo, Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7, 331–342 (2005)CrossRefGoogle Scholar
  13. 13.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, M.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filters. Nat. Mater. 3(9), 610–614 (2004)CrossRefGoogle Scholar
  15. 15.
    B.H. Jeong, E.M.V. Hoek, Y. Yan, X. Huang, A. Subramani, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007)CrossRefGoogle Scholar
  16. 16.
    J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)CrossRefGoogle Scholar
  17. 17.
    M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson Jr., W.A. Goddard III, Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2 PAMAM dendrimers with ethylene diamine core. Environ. Sci. Technol. 39(5), 1366–1377 (2005)CrossRefGoogle Scholar
  18. 18.
    M.S. Diallo, Water treatment by dendrimer enhanced filtration. U.S. Patent 7,470,369, 30 Dec 2008Google Scholar
  19. 19.
    S.J. Kim, S.H. Ko, K.H. Kang, J.Y. Han, Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297–301 (2010)CrossRefGoogle Scholar
  20. 20.
    U.S. Department of Agriculture, Economic Research Service (USDA-ERS), Table 1 – Food and alcoholic beverages: total expenditures (2009), Available online: http://www.ers.usda.gov/briefing/CPIFoodAndExpenditures/Data/Expenditures_tables/table1.htm
  21. 21.
    R.L. Scharff, Health-related costs from foodborne illness in the United States (Produce Safety Project, Washington, DC, 2010), Available online: http://www.producesafetyproject.org/media?id=0009
  22. 22.
    H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)CrossRefGoogle Scholar
  23. 23.
    P.R. Srinivas, M. Philbert, T.Q. Vu, Q. Huang, J.K. Kokini, E. Saos, H. Chen, C.M. Petersen, K.E. Friedl, C. McDade-Nguttet, V. Hubbard, P. Starke-Reed, N. Miller, J.M. Betz, J. Dwyer, J. Milner, S.A. Ross, Nanotechnology research: applications to nutritional sciences. J. Nutr. 140, 119–124 (2009), Available online: http://www.foodpolitics.com/wp-content/uploads/NanotechReview.pdf Google Scholar
  24. 24.
    T. Tarver, Food nanotechnology, a scientific status summary synopsis. Food Technol. 60(11), 22–26 (2006), Available online: http://members.ift.org/IFT/Pubs/FoodTechnology/Archives/ft_1106.htm Google Scholar
  25. 25.
    House of Lords of the United Kingdom, Nanotechnologies and food (2010). Science and Technology Committee.1st Report of Session 2009–10, Vol. I. HL Paper. 22-I, Available online: http://www.publications.parliament.uk/pa/ld/ldsctech.htm
  26. 26.
    N.R. Scott, H. Chen, Nanoscale science and engineering for agriculture and food systems. Roadmap report of the national planning workshop (Washington DC, 2003), Available online: http://www.nseafs.cornell.edu/web.roadmap.pdf. Accessed 18–19 Nov 2002
  27. 27.
    U.S. Department of Energy (DOE), Buildings energy data book (2009), Available online: http://buildingsdatabook.eere.energy.gov
  28. 28.
    P.A. Torcellini, D.B. Crawley, Understanding zero energy buildings. Am. Soc. Heat. Refriger.Air Cond. Eng. J. 48(9), 62–69 (2006)Google Scholar
  29. 29.
    Committee on State Practices in Setting Mobile Source Emissions Standards, National Research Council, State and Federal Standards for Mobile-Sources Emissions (National Academies Press, Washington, 2006)Google Scholar
  30. 30.
    S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation Energy Data Book, 27 ORNL-6981st edn. (Oak Ridge National Laboratory, Oak Ridge, 2008)Google Scholar
  31. 31.
    U.S. Environmental Protection Agency (EPA), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2006 (EPA, Washington, 2008)Google Scholar
  32. 32.
    Committee on the Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards, National Research Council., Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (National Academies Press, Washington, 2002)Google Scholar
  33. 33.
    National Nanotechnology Initiative (NNI), The initiative and its implementation plan (2000), Available online: http://www.nano.gov/html/res/nni2.pdf
  34. 34.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  35. 35.
    J.N. Coleman, U. Khan, Y. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006)CrossRefGoogle Scholar
  36. 36.
    Committee on Technologies for the Mining Industry, Committee on Earth Resources, National Research Council., Evolutionary and Revolutionary Technologies for Mining (National Academies Press, Washington, 2002)Google Scholar
  37. 37.
    Lux Research, The governing green giants: makers of cleantech nanointermediates on the Lux Innovation Grid. Paper LRNI-R-09-07 (Lux Research Nanomaterials Intelligence service, New York, 2010)Google Scholar
  38. 38.
    S.L. Gillett, Nanotechnology: clean energy and resources for the future. White paper for the Foresight Institute (2002), Available online: http://www.foresight.org/impact/whitepaper_illos_rev3.pdf
  39. 39.
    Pacific Northwest National Laboratory (PNNL), SAMMS technical summary (2009), Available online: http://samms.pnl.gov/samms.pdf
  40. 40.
    K.F. Schmidt, Green nanotechnology: it is easier than you think. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2007)Google Scholar
  41. 41.
    F. Shadman, Environmental challenges and opportunities in nano-manufacturing. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2006), Available online: http://www.nanotechproject.org/file_download/58
  42. 42.
    T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761–765 (2002)CrossRefGoogle Scholar
  43. 43.
    T. Zeng, W.-W. Chen, C.M. Cirtiu, A. Moores, G. Song, C.-J. Li, C-J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12, 570–573 (2010)CrossRefGoogle Scholar
  44. 44.
    C.L. Aravinda, S. Cosnier, W. Chen, N.V. Myung, A. Mulchandani, Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosens. Bioelectron. 24, 1451–1455 (2009)CrossRefGoogle Scholar
  45. 45.
    Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)CrossRefGoogle Scholar
  46. 46.
    D.G. Rickerby, M. Morisson, Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mat. 8, 19–24 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Vaseashta, D. Dimova-Malinovska, Nanostructured and nanoscale devices, sensors, and detectors. Sci. Technol. Adv. Mat. 6, 312–318 (2005)CrossRefGoogle Scholar
  48. 48.
    B. Wang, A.P. Cote, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)CrossRefGoogle Scholar
  49. 49.
    P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1(2), 44–48 (2006)CrossRefGoogle Scholar
  50. 50.
    Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39, 1338–1345 (2005)CrossRefGoogle Scholar
  51. 51.
    G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero-valent iron in a water/methanol solution. Environ. Sci. Technol. 38(19), 5208–5216 (2004)CrossRefGoogle Scholar
  52. 52.
    H. Song, E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 39, 6237–6254 (2005)CrossRefGoogle Scholar
  53. 53.
    R.M. Crooks, M.Q. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and application to catalysis. Acc. Chem. Res. 34, 181–190 (2001)CrossRefGoogle Scholar
  54. 54.
    L. Balogh, D.R. Swanson, D.A. Tomalia, G.L. Hagnauer, E.T. McManus, Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 1(1), 18–21 (2001)CrossRefGoogle Scholar
  55. 55.
    E.R. Birnbaum, K.C. Rau, N.N. Sauer, Selective anion binding from water using soluble polymers. Sep. Sci. Technol. 38(2), 389–404 (2003)CrossRefGoogle Scholar
  56. 56.
    M.S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W.A. Goddard, J.H. Johnson, Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20, 2640–2651 (2004)CrossRefGoogle Scholar
  57. 57.
    Intergovernmental Panel on Climate Change (IPCC), in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007)Google Scholar
  58. 58.
    Intergovernmental Panel on Climate Change (IPCC), in Carbon Dioxide Capture and Storage, ed. by Metz Bert, Davidson Ogunlade, Heleen de Coninck, Loos Manuela, Meyer Leo (Cambridge University Press, Cambridge, 2005)Google Scholar
  59. 59.
    F.R. Zheng, R.S. Addleman, C. Aardahl, G.E. Fryxell, D.R. Brown, T.S. Zemanian, Amine functionalized nanoporous materials for carbon dioxide (CO2) capture, in Environmental Applications of Nanomaterials, ed. by G.E. Fryxell, G. Cao (Imperial College Press, London, 2007), pp. 285–312Google Scholar
  60. 60.
    D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework with open metal sites. Proc. Natl. Acad. Sci. U.S.A. 106, 20637–20640 (2009)CrossRefGoogle Scholar
  61. 61.
    R. Banerjee, A. Phan, B. Wang, C.B. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and applications to CO2 capture. Science 319, 939–943 (2008)CrossRefGoogle Scholar
  62. 62.
    A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)CrossRefGoogle Scholar
  63. 63.
    Convention on Biological Diversity (CBD), Sustaining Life on Earth (Secretariat of the Convention on Biological Diversity, Montreal, 2010). ISBN 92-807-1904-1Google Scholar
  64. 64.
    Global Biodiversity Sub-Committee (GBSC), Nanotechnology and biodiversity: an initial consideration of whether research on the implications of nanotechnology is adequate for meeting aspirations for global biodiversity conservation (2009). Paper GECC GBSC (09)14, Available online: http://www.jncc.gov.uk/page-4628
  65. 65.
    M.E. Webber, Energy versus water: solving both crises together. Scientific American Earth (October Special Edition) (2008), pp. 34–41Google Scholar
  66. 66.
    Intergovernmental Panel on Climate Change (IPCC), Climate change and water, in Technical Paper of the Intergovernmental Panel on Climate Change, ed. by B.C. Bates, Z.W. Kundzewicz, S. Wu, J.P. Palutikof (IPCC Secretariat, Geneva, 2008)Google Scholar
  67. 67.
    A. Aston, China’s rare-earth monopoly. MIT Technology Review (2010), Available online: http://www.technologyreview.com/energy/26538/?p1=A2 15 Oct 2010
  68. 68.
    C. Hurst, China’s rare earth elements industry: what Can the West Learn (Institute for the Analysis of Global Security, Potomac, 2010), Available online: http://www.iags.org/reports.htm
  69. 69.
    Advanced Research Projects Agency-Energy (ARPA-E), High energy permanent magnets for hybrid vehicles and alternative energy (2010), Available online: http://arpa-e.energy.gov/ProgramsProjects/BroadFundingAnnouncement/VehicleTechnologies.aspx
  70. 70.
    J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114(2), 783 (2010)CrossRefGoogle Scholar
  71. 71.
    H. Park, C.D. Vecitis, M.R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113(18), 7935–7945 (2009)CrossRefGoogle Scholar
  72. 72.
    L.A. Silva, S.Y. Ryu, J. Choi, W. Choi, M.R. Hoffmann, Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 112(32), 12069–12073 (2008)CrossRefGoogle Scholar
  73. 73.
    J. Yuan, X. Liu, O. Akbulut, J. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 3, 332–336 (2008)CrossRefGoogle Scholar
  74. 74.
    H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)CrossRefGoogle Scholar
  75. 75.
    Y. Liu, E. Hu, E.A. Khan, Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J. Memb. Sci. 353, 36–40 (2010)CrossRefGoogle Scholar
  76. 76.
    D.W. Keith, Photophoretic levitation of aerosols for geoengineering. Geophy Res Abstr 10, EGU2008-A-11400 (European Geophysical Union, Vienna, 2008a)Google Scholar
  77. 77.
    D.W. Keith, Photophoretic levitation of stratospheric aerosols for efficient geoengineering. Paper read at Kavli Institute for Theoretical Physics Conference: Frontiers of Climate Science, Santa Barbara, 2008b, Available online: http://online.itp.ucsb.edu/online/climate_c08/keith
  78. 78.
    D.W. Keith, E. Parson, M.G. Morgan, Research on global sun block needed now. Nature 463, 426–427 (2010)CrossRefGoogle Scholar
  79. 79.
    T. Homer-Dixon, D. Keith, Blocking the sky to save the earth, Op-Ed. New York Times, 19 Sept 2008Google Scholar
  80. 80.
    YuA Izrael, V.M. Zakharov, N.N. Petrov, A.G. Ryaboshapko, V.N. Ivanov, A.V. Savchenko, AVYuV Andreev, YuA Puzov, B.G. Danelyan, V.P. Kulyapin, Field experiment on studying solar radiation passing through aerosol layers. Russ. Meteorol. Hydrol. 34, 265–274 (2009)CrossRefGoogle Scholar
  81. 81.
    J.J. Blackstock, D.S. Battisti, K. Caldeira, D.M. Eardley, J.I. Katz, D.W. Keith, A.A.N. Patrinos, D.P. Schrag, R.H. Socolow, S.E. Koonin, Climate engineering responses to climate emergencies (2009), Available online: http://arxiv.org/pdf/0907.5140
  82. 82.
    P.J. Rasch, P.J. Crutzen, D.B. Coleman, Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35, L02809 (2008)CrossRefGoogle Scholar
  83. 83.
    D.W. Keith, Geoengineering the climate: history and prospect. Annu. Rev. Energ. Environ. 25, 245–284 (2000)CrossRefGoogle Scholar
  84. 84.
    E. Teller, L. Wood, R. Hyde, Global warming and ice ages: I. Prospects for physics-based modulation of global change. University of California Research Laboratory Report UCRL-JC-128715 (Lawrence Livermore National Laboratories, Berkeley, Aug 1997)Google Scholar
  85. 85.
    M.C. Roco, R.S. Williams and P. Alivisatos, Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, IWGN Workshop Report, U.S. National Science and Technology Council, (1999), Washington, D.C. Also published by Springer (previously Kluwer), (2000), Dordrecht. Available on line on http://www.wtec.org/loyola/nano/IWGN.Research.Directions/
  86. 86.
    S. Kaur, R. Gopal, W.J. Ng, S. Ramakrishna, T. Masuura, Next-Generation Fibrous Media for Water Treatment, MRS Bulletin. 33(1), 21–26 (2008),Google Scholar
  87. 87.
    Tomalia, D.A., Henderson, S.A. Diallo, M.S. Dendrimers - An Enabling Synthetic Science To Controlled Organic Nanostructures. Chapter 24. Handbook of Nanoscience, Engineering and Technology. 2nd Edition. 2007. Second Edition; Goddard, W.A. III.; Brenner, D.W.; Lyshevski, S.E. and Iafrate, G.J.; Eds.; CRC Press: Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  1. 1.Environmental Science and Engineering, Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Graduate School of Energy, Environment, Water and Sustainability (EEWS)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.Department of Chemical and Nuclear EngineeringUniversity of New MexicoAlbuquerqueUSA
  4. 4.Department 1002Sandia National Laboratories, Self-Assembled MaterialsAlbuquerqueUSA

Personalised recommendations