Skip to main content

Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate

  • Chapter
  • First Online:
Book cover Nanotechnology Research Directions for Societal Needs in 2020

Part of the book series: Science Policy Reports ((SCIPOLICY,volume 1))

Abstract

The global sustainability challenges facing the world are complex and involve multiple interdependent areas. Chapter “Nanotechnology for Sustainability: Envi­ron­ment, Water, Food, Minerals, and Climate” focuses on sustainable nanotechnology solutions for a clean environment, water resources, food supply, mineral resources, green manufacturing, habitat, transportation, climate change, and biodiversity. It also discusses nanotechnology-based energy solutions in terms of their interdependence with other sustainability target areas such as water, habitat, transportation, and climate change. Chapter “Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation” is dedicated to energy resources.

*  With contributions from: André Nel, Mark Shannon, Nora Savage, Norman Scott, James Murday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Brundtland, Towards sustainable development. (Chapter 2 in A/42/427). Our common Future: Report of the World Commission on Environment and Development (1987), Available online: http://www.un-documents.net/ocf-02.htm

  2. D.J. Rapport, Sustainability science: an ecohealth perspective. Sustain. Sci. 2, 77–84 (2007)

    Article  Google Scholar 

  3. M.C. Roco, From vision to the implementation of the U.S. National Nanotechnology Initiative. J. Nanopart. Res. 3(1), 5–11 (2001)

    Article  CAS  Google Scholar 

  4. M.C. Roco, Broader societal issues of nanotechnology. J. Nanopart. Res. 5, 181–189 (2003)

    Article  Google Scholar 

  5. J. Rockström, W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J.A. Foley, A safe operating space for humanity. Nature 461, 472–475 (2009)

    Article  Google Scholar 

  6. U.S. Census Bureau, World POPClock Projection (2010), Available online: http://www.census.gov/ipc/www/popclockworld.html

  7. M.A. Shannon, Net energy and clean water from wastewater. ARPA-E Workshop (2010), Available online: http://arpae.energy.gov/ConferencesEvents/PastWorkshops/Wastewater.aspx

  8. United Nations Environment Programme (UNEP), Challenges to International Waters—Regional Assessments in a Global Perspective (UNEP, Nairobi, 2006)

    Google Scholar 

  9. Committee on Critical Mineral Impacts of the U.S. Economy, Committee on Earth Resources, National Research Council, Minerals, Critical Minerals, and the U.S. Economy (National Academies Press, Washington, 2008). ISBN 0-309-11283-4

    Google Scholar 

  10. T. Hillie, M. Munshinghe, M. Hlope, Y. Deraniyagala, n.d. Nanotechnology, water, and development, Available online: http://www.merid.org/nano/waterpaper

  11. Organisation for Economic Co-operation and Development (OECD), Global challenges: nanotechnology and water (2008). Report of an OECD workshop on exposure assessment. Series on the safety of nanomanufactured materials #13 (2008), DSTI/STP/NANO(2008) 14

    Google Scholar 

  12. N. Savage, M. Diallo, Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7, 331–342 (2005)

    Article  CAS  Google Scholar 

  13. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, M.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)

    Article  CAS  Google Scholar 

  14. A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filters. Nat. Mater. 3(9), 610–614 (2004)

    Article  CAS  Google Scholar 

  15. B.H. Jeong, E.M.V. Hoek, Y. Yan, X. Huang, A. Subramani, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007)

    Article  CAS  Google Scholar 

  16. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    Article  CAS  Google Scholar 

  17. M.S. Diallo, S. Christie, P. Swaminathan, J.H. Johnson Jr., W.A. Goddard III, Dendrimer-enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using Gx-NH2 PAMAM dendrimers with ethylene diamine core. Environ. Sci. Technol. 39(5), 1366–1377 (2005)

    Article  CAS  Google Scholar 

  18. M.S. Diallo, Water treatment by dendrimer enhanced filtration. U.S. Patent 7,470,369, 30 Dec 2008

    Google Scholar 

  19. S.J. Kim, S.H. Ko, K.H. Kang, J.Y. Han, Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297–301 (2010)

    Article  CAS  Google Scholar 

  20. U.S. Department of Agriculture, Economic Research Service (USDA-ERS), Table 1 – Food and alcoholic beverages: total expenditures (2009), Available online: http://www.ers.usda.gov/briefing/CPIFoodAndExpenditures/Data/Expenditures_tables/table1.htm

  21. R.L. Scharff, Health-related costs from foodborne illness in the United States (Produce Safety Project, Washington, DC, 2010), Available online: http://www.producesafetyproject.org/media?id=0009

  22. H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010)

    Article  CAS  Google Scholar 

  23. P.R. Srinivas, M. Philbert, T.Q. Vu, Q. Huang, J.K. Kokini, E. Saos, H. Chen, C.M. Petersen, K.E. Friedl, C. McDade-Nguttet, V. Hubbard, P. Starke-Reed, N. Miller, J.M. Betz, J. Dwyer, J. Milner, S.A. Ross, Nanotechnology research: applications to nutritional sciences. J. Nutr. 140, 119–124 (2009), Available online: http://www.foodpolitics.com/wp-content/uploads/NanotechReview.pdf

    Google Scholar 

  24. T. Tarver, Food nanotechnology, a scientific status summary synopsis. Food Technol. 60(11), 22–26 (2006), Available online: http://members.ift.org/IFT/Pubs/FoodTechnology/Archives/ft_1106.htm

    Google Scholar 

  25. House of Lords of the United Kingdom, Nanotechnologies and food (2010). Science and Technology Committee.1st Report of Session 2009–10, Vol. I. HL Paper. 22-I, Available online: http://www.publications.parliament.uk/pa/ld/ldsctech.htm

  26. N.R. Scott, H. Chen, Nanoscale science and engineering for agriculture and food systems. Roadmap report of the national planning workshop (Washington DC, 2003), Available online: http://www.nseafs.cornell.edu/web.roadmap.pdf. Accessed 18–19 Nov 2002

  27. U.S. Department of Energy (DOE), Buildings energy data book (2009), Available online: http://buildingsdatabook.eere.energy.gov

  28. P.A. Torcellini, D.B. Crawley, Understanding zero energy buildings. Am. Soc. Heat. Refriger.Air Cond. Eng. J. 48(9), 62–69 (2006)

    Google Scholar 

  29. Committee on State Practices in Setting Mobile Source Emissions Standards, National Research Council, State and Federal Standards for Mobile-Sources Emissions (National Academies Press, Washington, 2006)

    Google Scholar 

  30. S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation Energy Data Book, 27 ORNL-6981st edn. (Oak Ridge National Laboratory, Oak Ridge, 2008)

    Google Scholar 

  31. U.S. Environmental Protection Agency (EPA), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2006 (EPA, Washington, 2008)

    Google Scholar 

  32. Committee on the Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards, National Research Council., Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (National Academies Press, Washington, 2002)

    Google Scholar 

  33. National Nanotechnology Initiative (NNI), The initiative and its implementation plan (2000), Available online: http://www.nano.gov/html/res/nni2.pdf

  34. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)

    Article  CAS  Google Scholar 

  35. J.N. Coleman, U. Khan, Y. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006)

    Article  CAS  Google Scholar 

  36. Committee on Technologies for the Mining Industry, Committee on Earth Resources, National Research Council., Evolutionary and Revolutionary Technologies for Mining (National Academies Press, Washington, 2002)

    Google Scholar 

  37. Lux Research, The governing green giants: makers of cleantech nanointermediates on the Lux Innovation Grid. Paper LRNI-R-09-07 (Lux Research Nanomaterials Intelligence service, New York, 2010)

    Google Scholar 

  38. S.L. Gillett, Nanotechnology: clean energy and resources for the future. White paper for the Foresight Institute (2002), Available online: http://www.foresight.org/impact/whitepaper_illos_rev3.pdf

  39. Pacific Northwest National Laboratory (PNNL), SAMMS technical summary (2009), Available online: http://samms.pnl.gov/samms.pdf

  40. K.F. Schmidt, Green nanotechnology: it is easier than you think. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2007)

    Google Scholar 

  41. F. Shadman, Environmental challenges and opportunities in nano-manufacturing. Project on Emerging Nanotechnologies (Pen 8) (Woodrow Wilson International Center for Scholars, Washington, DC, 2006), Available online: http://www.nanotechproject.org/file_download/58

  42. T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761–765 (2002)

    Article  CAS  Google Scholar 

  43. T. Zeng, W.-W. Chen, C.M. Cirtiu, A. Moores, G. Song, C.-J. Li, C-J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12, 570–573 (2010)

    Article  CAS  Google Scholar 

  44. C.L. Aravinda, S. Cosnier, W. Chen, N.V. Myung, A. Mulchandani, Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosens. Bioelectron. 24, 1451–1455 (2009)

    Article  CAS  Google Scholar 

  45. Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923–5925 (2004)

    Article  CAS  Google Scholar 

  46. D.G. Rickerby, M. Morisson, Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mat. 8, 19–24 (2007)

    Article  CAS  Google Scholar 

  47. A. Vaseashta, D. Dimova-Malinovska, Nanostructured and nanoscale devices, sensors, and detectors. Sci. Technol. Adv. Mat. 6, 312–318 (2005)

    Article  CAS  Google Scholar 

  48. B. Wang, A.P. Cote, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008)

    Article  CAS  Google Scholar 

  49. P.G. Tratnyek, R.L. Johnson, Nanotechnologies for environmental cleanup. Nano Today 1(2), 44–48 (2006)

    Article  Google Scholar 

  50. Y. Liu, S.A. Majetich, R.D. Tilton, D.S. Sholl, G.V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39, 1338–1345 (2005)

    Article  CAS  Google Scholar 

  51. G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero-valent iron in a water/methanol solution. Environ. Sci. Technol. 38(19), 5208–5216 (2004)

    Article  CAS  Google Scholar 

  52. H. Song, E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 39, 6237–6254 (2005)

    Article  CAS  Google Scholar 

  53. R.M. Crooks, M.Q. Zhao, L. Sun, V. Chechik, L.K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and application to catalysis. Acc. Chem. Res. 34, 181–190 (2001)

    Article  CAS  Google Scholar 

  54. L. Balogh, D.R. Swanson, D.A. Tomalia, G.L. Hagnauer, E.T. McManus, Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett. 1(1), 18–21 (2001)

    Article  CAS  Google Scholar 

  55. E.R. Birnbaum, K.C. Rau, N.N. Sauer, Selective anion binding from water using soluble polymers. Sep. Sci. Technol. 38(2), 389–404 (2003)

    Article  CAS  Google Scholar 

  56. M.S. Diallo, S. Christie, P. Swaminathan, L. Balogh, X. Shi, W. Um, C. Papelis, W.A. Goddard, J.H. Johnson, Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir 20, 2640–2651 (2004)

    Article  CAS  Google Scholar 

  57. Intergovernmental Panel on Climate Change (IPCC), in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  58. Intergovernmental Panel on Climate Change (IPCC), in Carbon Dioxide Capture and Storage, ed. by Metz Bert, Davidson Ogunlade, Heleen de Coninck, Loos Manuela, Meyer Leo (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  59. F.R. Zheng, R.S. Addleman, C. Aardahl, G.E. Fryxell, D.R. Brown, T.S. Zemanian, Amine functionalized nanoporous materials for carbon dioxide (CO2) capture, in Environmental Applications of Nanomaterials, ed. by G.E. Fryxell, G. Cao (Imperial College Press, London, 2007), pp. 285–312

    Google Scholar 

  60. D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework with open metal sites. Proc. Natl. Acad. Sci. U.S.A. 106, 20637–20640 (2009)

    Article  CAS  Google Scholar 

  61. R. Banerjee, A. Phan, B. Wang, C.B. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and applications to CO2 capture. Science 319, 939–943 (2008)

    Article  CAS  Google Scholar 

  62. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)

    Article  CAS  Google Scholar 

  63. Convention on Biological Diversity (CBD), Sustaining Life on Earth (Secretariat of the Convention on Biological Diversity, Montreal, 2010). ISBN 92-807-1904-1

    Google Scholar 

  64. Global Biodiversity Sub-Committee (GBSC), Nanotechnology and biodiversity: an initial consideration of whether research on the implications of nanotechnology is adequate for meeting aspirations for global biodiversity conservation (2009). Paper GECC GBSC (09)14, Available online: http://www.jncc.gov.uk/page-4628

  65. M.E. Webber, Energy versus water: solving both crises together. Scientific American Earth (October Special Edition) (2008), pp. 34–41

    Google Scholar 

  66. Intergovernmental Panel on Climate Change (IPCC), Climate change and water, in Technical Paper of the Intergovernmental Panel on Climate Change, ed. by B.C. Bates, Z.W. Kundzewicz, S. Wu, J.P. Palutikof (IPCC Secretariat, Geneva, 2008)

    Google Scholar 

  67. A. Aston, China’s rare-earth monopoly. MIT Technology Review (2010), Available online: http://www.technologyreview.com/energy/26538/?p1=A2 15 Oct 2010

  68. C. Hurst, China’s rare earth elements industry: what Can the West Learn (Institute for the Analysis of Global Security, Potomac, 2010), Available online: http://www.iags.org/reports.htm

  69. Advanced Research Projects Agency-Energy (ARPA-E), High energy permanent magnets for hybrid vehicles and alternative energy (2010), Available online: http://arpa-e.energy.gov/ProgramsProjects/BroadFundingAnnouncement/VehicleTechnologies.aspx

  70. J. Choi, H. Park, M.R. Hoffmann, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114(2), 783 (2010)

    Article  CAS  Google Scholar 

  71. H. Park, C.D. Vecitis, M.R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113(18), 7935–7945 (2009)

    Article  CAS  Google Scholar 

  72. L.A. Silva, S.Y. Ryu, J. Choi, W. Choi, M.R. Hoffmann, Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 112(32), 12069–12073 (2008)

    Article  CAS  Google Scholar 

  73. J. Yuan, X. Liu, O. Akbulut, J. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 3, 332–336 (2008)

    Article  CAS  Google Scholar 

  74. H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)

    Article  CAS  Google Scholar 

  75. Y. Liu, E. Hu, E.A. Khan, Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J. Memb. Sci. 353, 36–40 (2010)

    Article  CAS  Google Scholar 

  76. D.W. Keith, Photophoretic levitation of aerosols for geoengineering. Geophy Res Abstr 10, EGU2008-A-11400 (European Geophysical Union, Vienna, 2008a)

    Google Scholar 

  77. D.W. Keith, Photophoretic levitation of stratospheric aerosols for efficient geoengineering. Paper read at Kavli Institute for Theoretical Physics Conference: Frontiers of Climate Science, Santa Barbara, 2008b, Available online: http://online.itp.ucsb.edu/online/climate_c08/keith

  78. D.W. Keith, E. Parson, M.G. Morgan, Research on global sun block needed now. Nature 463, 426–427 (2010)

    Article  CAS  Google Scholar 

  79. T. Homer-Dixon, D. Keith, Blocking the sky to save the earth, Op-Ed. New York Times, 19 Sept 2008

    Google Scholar 

  80. YuA Izrael, V.M. Zakharov, N.N. Petrov, A.G. Ryaboshapko, V.N. Ivanov, A.V. Savchenko, AVYuV Andreev, YuA Puzov, B.G. Danelyan, V.P. Kulyapin, Field experiment on studying solar radiation passing through aerosol layers. Russ. Meteorol. Hydrol. 34, 265–274 (2009)

    Article  Google Scholar 

  81. J.J. Blackstock, D.S. Battisti, K. Caldeira, D.M. Eardley, J.I. Katz, D.W. Keith, A.A.N. Patrinos, D.P. Schrag, R.H. Socolow, S.E. Koonin, Climate engineering responses to climate emergencies (2009), Available online: http://arxiv.org/pdf/0907.5140

  82. P.J. Rasch, P.J. Crutzen, D.B. Coleman, Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35, L02809 (2008)

    Article  Google Scholar 

  83. D.W. Keith, Geoengineering the climate: history and prospect. Annu. Rev. Energ. Environ. 25, 245–284 (2000)

    Article  Google Scholar 

  84. E. Teller, L. Wood, R. Hyde, Global warming and ice ages: I. Prospects for physics-based modulation of global change. University of California Research Laboratory Report UCRL-JC-128715 (Lawrence Livermore National Laboratories, Berkeley, Aug 1997)

    Google Scholar 

  85. M.C. Roco, R.S. Williams and P. Alivisatos, Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, IWGN Workshop Report, U.S. National Science and Technology Council, (1999), Washington, D.C. Also published by Springer (previously Kluwer), (2000), Dordrecht. Available on line on http://www.wtec.org/loyola/nano/IWGN.Research.Directions/

  86. S. Kaur, R. Gopal, W.J. Ng, S. Ramakrishna, T. Masuura, Next-Generation Fibrous Media for Water Treatment, MRS Bulletin. 33(1), 21–26 (2008),

    Google Scholar 

  87. Tomalia, D.A., Henderson, S.A. Diallo, M.S. Dendrimers - An Enabling Synthetic Science To Controlled Organic Nanostructures. Chapter 24. Handbook of Nanoscience, Engineering and Technology. 2nd Edition. 2007. Second Edition; Goddard, W.A. III.; Brenner, D.W.; Lyshevski, S.E. and Iafrate, G.J.; Eds.; CRC Press: Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Diallo .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business B.V.

About this chapter

Cite this chapter

Diallo, M., Brinker, C.J. (2011). Nanotechnology for Sustainability: Environment, Water, Food, Minerals, and Climate. In: Nanotechnology Research Directions for Societal Needs in 2020. Science Policy Reports, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1168-6_6

Download citation

Publish with us

Policies and ethics