Nanotechnology Environmental, Health, and Safety Issues

  • André Nel
  • David Grainger
  • Pedro J. Alvarez
  • Santokh Badesha
  • Vincent Castranova
  • Mauro Ferrari
  • Hilary Godwin
  • Piotr Grodzinski
  • Jeff Morris
  • Nora Savage
  • Norman Scott
  • Mark Wiesner
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)


The environmental, health, and safety (EHS) of nanomaterials has been defined as “the collection of fields associated with the terms ‘environmental health, human health, animal health, and safety’ when used in the context of risk assessment and risk management” ([1], p. 2). In this chapter, the term “nano-EHS” is used for convenience to refer specifically to environmental, health, and safety research and related activities as they apply to nanoscale science, technology, and engineering. This chapter outlines the major advances in nano EHS over the last 10 years and the major challenges, developments, and achievements that we can expect over the next 10 years without providing comprehensive coverage or a review of all the important issues in this field.


Nano EHS Nanomaterial properties Hazard, risk reduction In-vitro, in-vivo Predictive methods safe-by-design approach Role of industry International perspective 


  1. 1.
    National Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology of the National Science and Technology Council, Environmental, health, and safety research needs for engineered nanoscale materials (NSET, Washington, DC, 2006), Available online:
  2. 2.
    V.L. Colvin, The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21(10), 1166–1170 (2003)CrossRefGoogle Scholar
  3. 3.
    A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, M.A. Philbert, J. Ryan, A. Seaton, V. Stone, S.S. Tinkle, L. Tran, N.J. Walker, D.B. Warheit, Safe handling of nanotechnology. Nature 444(7117), 267–269 (2006)CrossRefGoogle Scholar
  4. 4.
    A.E. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Fibre Toxicol. 2, 8 (2005). doi: 10.1186/1743-8977-2-8 CrossRefGoogle Scholar
  6. 6.
    A. Seaton, L. Tran, R. Aitken, K. Donaldson, Nanoparticles, human health hazard and regulation. J. R. Soc. Interface 7, S119–S129 (2010)CrossRefGoogle Scholar
  7. 7.
    National Institute of Environmental Health Sciences (NIEHS), Toxicology in the 21st century: the role of the National Toxicology Program (NIEHS, Research Triangle Park, 2004), Available online:
  8. 8.
    National Research Council, ToxicityTesting in the 21st Century: A Vision and a Strategy (National Academies Press, Washington, DC, 2007), Available online: or
  9. 9.
    N. Walker, J.R. Bucher, A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol. Sci. 110, 251–254 (2009)CrossRefGoogle Scholar
  10. 10.
    V.C. Abraham, D.L. Taylor, J.R. Haskins, High-content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15–22 (2004)CrossRefGoogle Scholar
  11. 11.
    V.C. Abraham, D.L. Towne, J.F. Waring, U. Warrior, D.J. Burns, Application of a high-content multi-parameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J. Biomol. Screen. 13, 527–537 (2008)CrossRefGoogle Scholar
  12. 12.
    S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K.A. Bradley, L. Mädler, A.E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4, 15–29 (2010)CrossRefGoogle Scholar
  13. 13.
    R.F. Service, Nanotechnology: can high-speed tests sort out which nanomaterials are safe? Science 321(5892), 1036–1037 (2008)CrossRefGoogle Scholar
  14. 14.
    T.M Benn, B. Cavanagh, B.K. Hristovski, J. Posner, P. Westerhoff, The release of (nano)silver from consumer products used in the home. J. Environ. Qual., published online 12 July 2010. doi: 10.2134/jeq2009.0363
  15. 15.
    T.M Benn, P. Westerhoff, P. Herckes, Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ. Pollu. 159(5), 1334–1342 (2011) Scholar
  16. 16.
    D.B. Warheit, C.M. Sayes, K.L. Reed, K.A. Swain, Health effects related to nanoparticle exposures: environmental, health, and safety considerations for assessing hazards and risks. Pharmacol. Ther. 120, 35–42 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Meng, T. Xia, S. George, A.E. Nel, A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3, 1620–1627 (2009)CrossRefGoogle Scholar
  18. 18.
    National Toxicology Program (NTP), Toxicology in the 21st century: the role of the National Toxicology Program (Department of Health and Human Services, NIEHS/NTP, Research Triangle Park, 2004), Available online:
  19. 19.
    J.E. Hutchinson, Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2, 395–402 (2008)CrossRefGoogle Scholar
  20. 20.
    A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009)CrossRefGoogle Scholar
  21. 21.
    M.C. Roco, Environmentally responsible development of nanotechnology. Environ. Sci. Technol. 39(5), 106A–112A (2005). doi: 10.1021/es053199u CrossRefGoogle Scholar
  22. 22.
    M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105, 14265–14270 (2008)CrossRefGoogle Scholar
  23. 23.
    C.W. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRefGoogle Scholar
  24. 24.
    Z. Liu, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Mercer, R.J. Scabilloni, L. Wang, E. Kisin, A.R. Murray, D. Schwegler-Berry, A.A. Shvedova, V. Castranova, Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L87–L97 (2008)CrossRefGoogle Scholar
  26. 26.
    C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A.H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)CrossRefGoogle Scholar
  27. 27.
    D.W. Porter, A.F. Hubbs, R.R. Mercer, N. Wu, M.G. Wolfarth, K. Sriram, S. Leon, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B.T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3), 136–147 (2010). 10CrossRefGoogle Scholar
  28. 28.
    A.A. Shvedova, V. Castranova, E.R. Kisin, D. Schwegler-Berry, A.R. Murray, V.Z. Gandelsman, A. Maynard, P. Baron, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66, 1909–1926 (2003)CrossRefGoogle Scholar
  29. 29.
    A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J.S. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castranova, P. Baron, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L698–L708 (2005)CrossRefGoogle Scholar
  30. 30.
    A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, J. Kanno, Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multiwall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008)CrossRefGoogle Scholar
  31. 31.
    N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600–11605 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotechnol. 26, 774–776 (2008)CrossRefGoogle Scholar
  33. 33.
    A.E. Porter, Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2, 713–717 (2007)CrossRefGoogle Scholar
  34. 34.
    U.S. Environmental Protection Agency (U.S. EPA), TSCA inventory status of nanoscale substances: general approach (2008), Available online:
  35. 35.
    L. Research, The Nanotech Report, 5th edn. (Lux Research, New York, 2007)Google Scholar
  36. 36.
    T. Xia, M. Kovochich, M. Liong, L. Mäedler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008)CrossRefGoogle Scholar
  37. 37.
    D.B. Warheit, T.R. Webb, C.M. Sayes, V.L. Colvin, K.L. Reed, Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006)CrossRefGoogle Scholar
  38. 38.
    D.D. Zhang, M.A. Hartsky, D.B. Warheit, Time course of quartz and TiO2 particle: induced pulmonary inflammation and neutrophil apoptotic responses in rats. Exp. Lung Res. 28, 641–670 (2002)CrossRefGoogle Scholar
  39. 39.
    National Institute for Occupational Safety and Health (NIOSH), Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials (DHHS (NIOSH) publication 2009–125, Washington, DC, 2009), Available online:
  40. 40.
    Environmental Defense Fund (EDF), NANO risk framework (2007), Available online:
  41. 41.
    Environmental Working Group (EWG), Nanotechnology and sunscreens: EWG’s 2009 sunscreen investigation Sect. 4 (2009), Available online:
  42. 42.
    A. Kahru, H.-C. Dubourguier, From ecotoxicology to nanoecotoxicology. Toxicology 269, 105–119 (2010)CrossRefGoogle Scholar
  43. 43.
    U.S. Environmental Protection Agency (U.S. EPA), Federal insecticide, fungicide, and rodenticide act (FIFRA) (1996), Available online:
  44. 44.
    P.V. Asharani, Y.L. Wu, Z. Gong, S. Valiyaveettl, Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 255102–255110 (2008)CrossRefGoogle Scholar
  45. 45.
    N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008)CrossRefGoogle Scholar
  46. 46.
    C.F. Jones, D.W. Grainger, In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009)CrossRefGoogle Scholar
  47. 47.
    C.M. Sayes, K.L. Reed, D.B. Warheit, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–180 (2007)CrossRefGoogle Scholar
  48. 48.
    K. Donaldson, P.J. Borm, G. Oberdörster, K.E. Pinkerton, V. Stone, C.L. Tran, Concordance between in vitro and in vivo dosimetry in the proinflammatory effects of low-toxicity, low-solubility particles: the key role of the proximal alveolar region. Inhal. Toxicol. 20, 53–62 (2008)CrossRefGoogle Scholar
  49. 49.
    E. Rushton, J. Jiang, S. Leonard, S. Eberly, V. Castranova, P. Biswas, A. Elder, X. Han, R. Gelein, J. Finkelstein, G. Oberdörster, Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response-metrics. J. Toxicol. Environ. Health A 73, 445–461 (2010)CrossRefGoogle Scholar
  50. 50.
    T.M. Sager, D.W. Porter, V.A. Robinson, W.G. Lindsley, D.E. Schwegler-Berry, V. Castranova, Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1, 118–129 (2007)CrossRefGoogle Scholar
  51. 51.
    J.G. Teeguarden, P.M. Hinderliter, G. Orr, B.D. Thrall, J.G. Pounds, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95, 300–312 (2007)CrossRefGoogle Scholar
  52. 52.
    R. Duffin, L. Tran, D. Brown, V. Stone, K. Donaldson, Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol. 19, 849–856 (2007)CrossRefGoogle Scholar
  53. 53.
    C. Monteiller, L. Tran, W. MacNee, S. Faux, A. Jones, B. Miller, K. Donaldson, The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup. Environ. Med. 64, 609–615 (2007)CrossRefGoogle Scholar
  54. 54.
    T. Xia, M. Kovochich, M. Liong, J.I. Zink, A.E. Nel, Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2, 85–96 (2008)CrossRefGoogle Scholar
  55. 55.
    G. Oberdörster, E. Oberdörster, J. Oberdörster, Concepts of nanoparticle dose metric and response metric. Environ. Health Perspect. 115, A290 (2007)CrossRefGoogle Scholar
  56. 56.
    T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006)CrossRefGoogle Scholar
  57. 57.
    S. Chellam, C.A. Serra, M.R. Wiesner, Life cycle cost assessment of operating conditions and pretreatment on integrated membrane systems. J. Am. Water Works Assn. 90(11) 96–104 (1998)Google Scholar
  58. 58.
    M. Widmer, C. Meili, E. Mantovani, A. Porcari, The framing nano governance platform: a new integrated approach to the responsible development of nanotechnologies (FP7: FramingNanoProject Consortium, 2010), Available online:
  59. 59.
    A. Barnard, How can ab initio simulations address risks in nanotech. Nat. Nanotechnol. 4, 332–335 (2009)CrossRefGoogle Scholar
  60. 60.
    E.C. Butcher, E.L. Berg, E.J. Kunkel, Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004)CrossRefGoogle Scholar
  61. 61.
    H.A. Godwin, K. Chopra, K.A. Bradley, Y. Cohen, B. Herr Harthorn, E.M.V. Hoek, P. Holden, A.A. Keller, H.S. Lenihan, R. Nisbet, A.E. Nel, The University of California Center for the Environmental Implications of Nanotechnology. Environ. Sci. Technol. 43, 6453–6457 (2009)CrossRefGoogle Scholar
  62. 62.
    Organisation for Economic Co-operation and Development (OECD), The UN principles for responsible investment and the OECD guidelines for multinational enterprises: complementarities and distinctive contributions. Annex II-A4, in Annual Report on the OECD Guidelines for Multinational Enterprises (OECD, Paris, 2007)Google Scholar
  63. 63.
    T. Puzyn, D. Leszczynska, J. Leszczynski, Toward the development of “nano-QSARs”: advances and challenges. Small 5, 2494–2509 (2009)CrossRefGoogle Scholar
  64. 64.
    M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005)CrossRefGoogle Scholar
  65. 65.
    K. Riehemann, S.W. Schneider, T.A. Luger, B. Godwin, M. Ferrari, H. Fuchs, Nanomedicine – Challenge and perspective. Angew. Chem. Int. Ed Engl. 48(5), 872–897 (2010)CrossRefGoogle Scholar
  66. 66.
    J.H. Sakamoto, A.L. van de Ven, B. Godin, E. Bianco, R.E. Serda, A. Grattoni, A. Ziemys, A. Bouamrani, T. Hu, S.I. Ranganathan, E. De Rosa, J.O. Martinez, C.A. Smid, R.M. Buchanan, S.-Y. Lee, S. Srinivasan, M. Landry, A. Meyn, E. Tasciotti, X. Liu, P. Decuzzi, M. Ferrari, Enabling individualized therapy through nanotechnology. Pharm. Res. 62(2), 57–89 (2010)CrossRefGoogle Scholar
  67. 67.
    M. Ferrari, Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28(4), 181–188 (2010)CrossRefGoogle Scholar
  68. 68.
    S.E. McNeill, Nanotechnology for the biologist. J. Leukoc. Biol. 78, 585–594 (2005)CrossRefGoogle Scholar
  69. 69.
    W.R. Sanhai, J. Spiegel, M. Ferrari, A critical path approach to advance nanoengineered medical products. Drug Discov. Today Technol. 4(2), 35–41 (2007)CrossRefGoogle Scholar
  70. 70.
    M. Ferrari, M. Philibert, W. Sanhai, Nanomedicine and society. Clin. Pharmacol. Ther. 85(5), 466–467 (2009)CrossRefGoogle Scholar
  71. 71.
    Food and Drug Administration (FDA), Fact sheet: FDA nanotechnology task force report outlines scientific, regulatory challenges (2007), Available online: Also, the Nanotechnology task force report to which it refers,
  72. 72.
    P. Decuzzi, M. Ferrari, Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3), 377–384 (2008)CrossRefGoogle Scholar
  73. 73.
    P. Decuzzi, R. Pasqualani, W. Arap, M. Ferrari, Intravascular delivery of particulate systems. Pharm. Res. 2(1), 235–243 (2008)Google Scholar
  74. 74.
    X. Yu, L. Jin, Z.H. Zhou, A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008)CrossRefGoogle Scholar
  75. 75.
    W. Baumeister, A voyage to the inner space of cells. Protein Sci. 14, 257–269 (2005)CrossRefGoogle Scholar
  76. 76.
    B. Carragher, D. Fellmann, F. Guerra, R.A. Milligan, F. Mouche, J. Pulokas, B. Sheehan, J. Quispe, C. Suloway, Y. Zhu, C.S. Potter, Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. J. Synchrotron Radiat. 11, 83–85 (2004)CrossRefGoogle Scholar
  77. 77.
    V. Lucic, A.H. Kossel, T. Yang, T. Bonhoeffer, W. Baumeister, A. Sartori, Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146–156 (2007)CrossRefGoogle Scholar
  78. 78.
    A. Sartori, R. Gatz, F. Beck, A. Kossel, A. Leis, W. Baumeister, J.M. Plitzko, Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007)CrossRefGoogle Scholar
  79. 79.
    A.C. Steven, W. Baumeister, The future is hybrid. J. Struct. Biol. 163, 186–195 (2008)CrossRefGoogle Scholar
  80. 80.
    J.A. Heymann, M. Hayles, I. Gestmann, L.A. Giannuzzi, B. Lich, S. Subramaniam, Site-specific 3D imaging of cells and tissues with a dual beam microscope. J. Struct. Biol. 155, 63–73 (2006)CrossRefGoogle Scholar
  81. 81.
    M. Marko, Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods. 4, 215–217 (2007)CrossRefGoogle Scholar
  82. 82.
    D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003)CrossRefGoogle Scholar
  83. 83.
    X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.N. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)CrossRefGoogle Scholar
  84. 84.
    S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 105, 5844–5849 (2008)CrossRefGoogle Scholar
  85. 85.
    D.J. Gentleman, W.C.W. Chan, A systematic nomenclature for codifying engineered nanostructures. Small 5, 426–431 (2009)CrossRefGoogle Scholar
  86. 86.
    R.J. Rowlett, An interpretation of Chemical Abstracts Service indexing policies. J. Chem. Inf. Comput. Sci. 24, 152–154 (1984)Google Scholar
  87. 87.
    L. Research, The Recession’s Ripple Effect on Nanotech: State of the Market Report (Lux Research, New York, 2009)Google Scholar
  88. 88.
    M.R. Wiesner, G.V. Lowry, K.L. Jones, M.F. Hochella, R.T. Di Guilio, E. Casman, E.S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 43, 6458–6462 (2009)CrossRefGoogle Scholar
  89. 89.
    House of Lords of the UK Parliament, Science and Technology Committee, Nanotechnologies and food. 1st Report of Session 2009–10, vol I, HL Paper 22-I (The Stationery Office Limited, London, 2010), Available online:
  90. 90.
    M. Widmer, The “Nano Information Pyramid” as an approach to the “no data, no market” problem of Nanotechnologies (The Innovation Society, St. Gallen, 2010), Available online:
  91. 91.
    Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602 (2008)CrossRefGoogle Scholar
  92. 92.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)CrossRefGoogle Scholar
  93. 93.
    P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice (Oxford University Press, New York, 1998)Google Scholar
  94. 94.
    P.J.J. Alvarez, V. Colvin, J. Lead, V. Stone, Research priorities to advance eco-responsible nanotechnology. ACS Nano 3, 1616–1619 (2009)CrossRefGoogle Scholar
  95. 95.
    W.A. Lee, N. Pernodet, B. Lin, C.H. Lin, E. Hatchwell, M.H. Rafailovich, Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem. Commun. Camb 45, 4815–4817 (2007)CrossRefGoogle Scholar
  96. 96.
    T.L. Kirschling, K.B. Gregory, E.G. Minkley, G.V. Lowry, R.D. Milton, Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ. Sci. Technol. 44, 3474–3480 (2010)CrossRefGoogle Scholar
  97. 97.
    Z. Xiu, Z. Jin, T. Li, S. Mahendra, G.V. Lowry, P.J.J. Alvarez, Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour. Technol. 101, 1141–1146 (2010)CrossRefGoogle Scholar
  98. 98.
    C. Kirchner, T. Liedl, S. Kurdera, T. Pellegrino, A. Muño Javier, H.E. Gaub, S. Stölzie, N. Fertig, W.J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005)CrossRefGoogle Scholar
  99. 99.
    T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2, 194–205 (2005)CrossRefGoogle Scholar
  100. 100.
    T.S. Hauck, A.A. Ghazani, W.C. Chan, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4, 153–159 (2008)CrossRefGoogle Scholar
  101. 101.
    J.A. Khan, B. Pillai, T.K. Das, Y. Singh, S. Maiti, Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8, 1237–1240 (2007)CrossRefGoogle Scholar
  102. 102.
    N.R. Scott, H. Chen, Nanoscale Science and Engineering for Agriculture and Food Systems. Roadmap report of the national planning workshop, 18–19 November 2002 (USDA/CSREES, Washington, DC, 2003), Available online:
  103. 103.
    P.R. Srinivas, M. Philbert, T.Q. Vu, Q. Huang, J.K. Kokini, E. Saos, H. Chen, C.M. Petersen, K.E. Friedl, C. McDade-Nguttet, V. Hubbard, P. Starke-Reed, N. Miller, J.M. Betz, J. Dwyer, J. Milner, S.A. Ross, Nanotechnology research: applications to nutritional sciences. J. Nutr. 140, 119–124 (2009)Google Scholar
  104. 104.
    T. Tarver, Food nanotechnology: a scientific status summary synopsis. Food Technol. 60(11), 22–26 (2006)Google Scholar
  105. 105.
    J. Weiss, P. Takhistov, J. McClement, Functional materials in food nanotechnology. J. Food Sci. 71(9), R107–R116 (2006)CrossRefGoogle Scholar
  106. 106.
    N.R. Scott, Impact of nanoscale technologies in animal management, in Animal Production and Animal Science Worldwide, ed. by A. Rosati, A. Tewolde, C. Mosconi (Wageningen Academic Publishers, Wageningen, 2007), pp. 283–291Google Scholar
  107. 107.
    N. Pidgeon, B. Herr Harthorn, K. Bryant, T. Rogers-Hayden, Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nat. Nanotechnol. 4, 95–98 (2009)CrossRefGoogle Scholar
  108. 108.
    H.S. Rosenkrantz, A.R. Cunningham, Y.P. Zhang, H.G. Claycamp, O.T. Macina, N.B. Sussman, S.G. Grant, G. Klopman, Development, characterization and application of predictive-toxicology models SAR. QSAR Environ. Res. 10, 277–298 (1999)CrossRefGoogle Scholar
  109. 109.
    R. Benigni, T.I. Netzeva, E. Benfenati, C. Bossa, R. Franke, C. Helma, E. Hulzebos, C. Marchant, A. Richard, Y.-T. Woo, C. Yang, The expanding role of predictive toxicology: an update on the (Q)SAR models of mutagens and carcinogens. J. Environ. Sci. Health C 25, 53–97 (2007)CrossRefGoogle Scholar
  110. 110.
    B. Fubini, Surface reactivity in the pathogenic response to particulates. Environ. Health Perspect. 105, 1013–1020 (1997)Google Scholar
  111. 111.
    V. Vallyathan, S. Leonard, P. Kuppusamy, D. Pack, M. Chzhan, S.P. Sanders, J.L. Zweir, Oxidative stress in silicosis: evidence for the enhanced clearance of free radicals from whole lungs. Mol. Cell. Biochem. 168, 125–132 (1997)CrossRefGoogle Scholar
  112. 112.
    A. Nel, Atmosphere. Air pollution-related illness: biomolecular effects of particles. Science 308, 804 (2005)CrossRefGoogle Scholar
  113. 113.
    T. Xia, N. Li, A.E. Nel, Potential health impact of nanoparticles. Annu. Rev. Public Health 30, 21.1–21.14 (2009)CrossRefGoogle Scholar
  114. 114.
    R. Becher, R.B. Hetland, M. Refsnes, J.E. Dahl, H.J. Dahlman, P.E. Schwarze, Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles. Inhal. Toxicol. 13, 789–805 (2001)CrossRefGoogle Scholar
  115. 115.
    A. Keller, X. Wang, D. Zhou, H. Lenihan, G. Cherr, B. Cardinale, R.J. Miller, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44(6), 1962–1967 (2010)CrossRefGoogle Scholar
  116. 116.
    M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 58, 3689–3693 (2010)CrossRefGoogle Scholar
  117. 117.
    R.J. Miller, H.S. Lenihan, E.B. Muller, N. Tseng, S.K. Hanna, A.A. Keller, Impacts of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol (online publication 14 May 2010). doi: 10.1021/es100247x
  118. 118.
    Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E.M.V. Hoek, H. Godwin, A.E. Nel, J.I. Zink, Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ. Sci. Technol (online publication 10 June2010). doi:  10.1021/es100417s
  119. 119.
    P. Wang, A. Keller, Natural and engineered nano and collodial transport: role of zeta potential in prediction of particle distribution. Langmuir 25(12), 6856–6862 (2009)CrossRefGoogle Scholar
  120. 120.
    P. Wang, Q. Shi, H. Liang, D. Steuerman, G. Stucy, A.A. Keller, Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 4(12), 2166–2170 (2008)CrossRefGoogle Scholar
  121. 121.
    J. Priester, P. Stoimenov, R. Mielke, S. Webb, C. Ehrhardt, J. Zhang, G. Stucky, P. Holden, Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ. Sci. Technol. 43(7), 2589–2594 (2009)CrossRefGoogle Scholar
  122. 122.
    M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763 (2009)CrossRefGoogle Scholar
  123. 123.
    T.M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 4133–4139 (2008)CrossRefGoogle Scholar
  124. 124.
    A. Kiser, H. Ryu, G. Jang, K. Hristovski, P. Westerhoff, Biosorption of nanoparticles on heterotrophic wastewater biomass. Water Res. 44(14), 4105–4114 (2010). doi: 10.1016/j.watres.2010.05.036 CrossRefGoogle Scholar
  125. 125.
    P. Westerhoff, G. Song, K. Hristovski, M.A. Kiser, Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 Nanomaterials, J. Environ.Moni. DOI: 10.1039/C1EM10017C (2011)Google Scholar
  126. 126.
    ChemicalWatch, A range of tools are needed to communicate the risks of nanomaterials through the value chain. Monthly Briefing (CW Research, Shrewsbury, 2010), Available at:
  127. 127.
    P. Aguar, J.J. Murcia Nicolás, EU Nanotechnology R&D in the Field of Health and Environmental Impact of Nanoparticles (European Commission Research Directorate-General (FP6/7), Brussels, 2008), Available online:
  128. 128.
    National Institute of Standards and Technology (NIST), Advance Technology Program (ATP) economic studies, survey results, reports and working papers (2009) (online index), Available online:
  129. 129.
    Environmental Defense Fund (EDF), DuPont nano risk framework (2008), Available online:
  130. 130.
    DuPont, Position statement: DuPont NanoScale Science & Engineering (NS&E) (2010), Available online:
  131. 131.
    International Organization for Standardization (ISO), Web site of ISO Technical Committee 229 (Nanotechnologies) (2010),
  132. 132.
    National Institute for Occupational Safety and Health (NIOSH), Strategic plan for NIOSH nanotechnology research and guidance: filling the knowledge gaps (DHHS/CDC, Atlanta, 2008), Available online:
  133. 133.
    National Institute for Occupational Safety and Health (NIOSH), Progress toward safe nanotechnology in the workplace (DHHS/CDC, Atlanta, 2007), Available online:
  134. 134.
    M. Methner, L. Hodson, C. Geraci, Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials – Part A. J. Occup. Environ. Hyg. 7, 127–132 (2010)CrossRefGoogle Scholar
  135. 135.
    National Institute for Occupational Safety and Health (NIOSH), NIOSH current intelligence bulletin: evaluation of health hazards and recommendations for occupational exposure to titanium dioxide, in Final Policy Clearance for Full Publication (NIOSH, NIOSH Docket #100, Washington, DC, 2005), Available online:
  136. 136.
    National Institute for Occupational Safety and Health (NIOSH), NIOSH current intelligence bulletin: occupational exposure to carbon nanotubes and nanofibers. Draft being evaluated for policy clearance for placement online on the NIOSH Web site for public comment. Approval anticipated by the end of 2010Google Scholar
  137. 137.
    M. Riedicker, G. Katalagarianakis (eds.), Compendium of projects in the European NanoSafety Cluster (2010), Available online:

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  • André Nel
    • 1
  • David Grainger
    • 2
  • Pedro J. Alvarez
    • 3
  • Santokh Badesha
    • 4
  • Vincent Castranova
    • 5
  • Mauro Ferrari
    • 6
  • Hilary Godwin
    • 7
  • Piotr Grodzinski
    • 8
  • Jeff Morris
    • 9
  • Nora Savage
    • 10
  • Norman Scott
    • 11
  • Mark Wiesner
    • 12
  1. 1.Department of Medicine and California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA
  4. 4.Xerox CorporationWilsonvilleUSA
  5. 5.Health Effects Laboratory DivisionCenters for Disease Control, National Institute for Occupational Safety and HealthMorgantownUSA
  6. 6.The University of Texas Health Science CenterHoustonUSA
  7. 7.Pubic Health–Environmental Health ScienceUniversity of CaliforniaLos AngelesUSA
  8. 8.Office of Technology and Industrial RelationsNational Cancer InstituteBethesdaUSA
  9. 9.Ronald Reagan Building and International Trade CenterU.S. Environmental Protection AgencyWashingtonUSA
  10. 10.U.S. Environmental Protection Agency Office of Research and DevelopmentNational Center for Environmental ResearchWashingtonUSA
  11. 11.Biological and Chemical EngineeringCornell UniversityIthacaUSA
  12. 12.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations