Advertisement

Enabling and Investigative Tools: Measuring Methods, Instruments, and Metrology

  • Dawn A. Bonnell
  • Vinayak P. Dravid
  • Paul S. Weiss
  • David Ginger
  • Keith Jackson
  • Don Eigler
  • Harold Craighead
  • Eric Isaacs
Chapter
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)

Abstract

Advances in nanotechnology investigative tools have enabled fundamentally new approaches to the research carried out during the last decade. The crucial role of tools for manipulation and characterization of matter at the nanoscale was articulated by Nobel Laureate Horst Störmer in 1999 at the first U.S. Nanotechnology Research Directions workshop, as follows: “Nanotechnology has given us the tools… to play with the ultimate toy box of nature—atoms and molecules… [This scale] provides an impressive array of novel opportunities to mix-and-match hunks of chemistry and biology with artificially defined, person-made structures. The possibilities to create new things appear endless” ([1], p. viii). The workshop vision at that time was that the promises of nanotechnology could be realized only through “the development of new experimental tools to broaden the capability to measure and to control nanostructured matter, including developing new standards of measurement.” A particular point was made to extend this recommendation to biomolecules (p. xvi).

Keywords

Scanning probe microscopy Scanning tunneling microscopy, atomic force microscopy Electron microscopy Synchrotron radiation, X-ray scattering Spatial resolution Time resolution Nanoscale properties Subsurface measurements Nanobio instrumentation Nanolithography Nanofabrication, nanoscale metrology International perspective 

References

  1. 1.
    M.C. Roco, R.S. Williams, P. Alivisatos (eds.), Nanotechnology Research Directions: IWGN [NSTC] Workshop Report: Vision for Nanotechnology R&D in the Next Decade (International Technology Research Institute at Loyola College, Baltimore, 1999), Available online: http://www.nano.gov/html/res/pubs.html
  2. 2.
    D.A. Bonnell, Pushing resolution limits of functional imaging to probe atomic scale properties. ACS Nano 2, 1753–1759 (2008). doi: 10.1021/nn8005575 CrossRefGoogle Scholar
  3. 3.
    T. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis, An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007). doi: 10.1126/science.1138584 CrossRefGoogle Scholar
  4. 4.
    C. Brun, J.C. Girard, Z.Z. Wang, J. Dumas, J. Marcus, C. Schlenker, Charge-density waves in rubidium blue bronze Rb0.3MoO3 observed by scanning tunneling microscopy. Phys. Rev. B 72, 235119–235126 (2005). doi: 10.1103/PhysRevB.72.235119 CrossRefGoogle Scholar
  5. 5.
    M.P. Nikiforov, A.F. Isakovic, D.A. Bonnell, Atomic structure and charge-density waves of blue bronze K0.3MoO3(201) by variable-temperature scanning tunneling microscopy. Phys. Rev. B 76, 033104 ((2007)CrossRefGoogle Scholar
  6. 6.
    F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)CrossRefGoogle Scholar
  7. 7.
    F.J. Giessibl, H. Bielefeldt, Physical interpretation of frequency-modulation atomic force microscopy. Phys. Rev. B 61, 9968–9971 (2000). doi: 10.1103/PhysRevB.61.9968 CrossRefGoogle Scholar
  8. 8.
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morito, O. Custance, Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007). doi: 10.1038/nature05530 CrossRefGoogle Scholar
  9. 9.
    T. Eguchi, Y. Fujikawa, K. Akiyama, T. An, M. Ono, Y. Hashimoto, Y. Morikawa, K. Terakura, T. Sakurai, M.G. Lagally, Y. Hasegawa, Imaging of all dangling bonds and their potential on the Ge/Si(105) surface by noncontact atomic force microscopy. Phys. Rev. Lett. 93, 266102 (2004). doi: 10.1103/PhysRevLett.93.266102 CrossRefGoogle Scholar
  10. 10.
    Y. Cho, R. Hirose, Atomic dipole moment distribution of Si Atoms on a Si(111)-(7  ×  7) surface studied using noncontact scanning nonlinear dielectric microscopy. Phys. Rev. Lett. 99, 186101–186105 (2007). doi: 10.1103/PhysRevLett.99.186101 CrossRefGoogle Scholar
  11. 11.
    B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.V. Kalinin, High-resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. Phys. Rev. Lett. 96, 237602 (2006)CrossRefGoogle Scholar
  12. 12.
    B.C. Stipe, M.A. Rezaci, W. Ho, Single-molecule vibrational spectroscopy and microscopy. Science 280(5370), 1372–1375 (1998)CrossRefGoogle Scholar
  13. 13.
    J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.-P. Rust, Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003)CrossRefGoogle Scholar
  14. 14.
    J.R. Hahn, W. Ho, Orbital specific chemistry: controlling the pathway in single-molecule dissociation. J. Chem. Phys. 122, 244 (2005)CrossRefGoogle Scholar
  15. 15.
    A.J. Heinrich, J.A. Gupta, C.P. Lutz, D.M. Eigler, Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004). doi: 10.1126/science.1101077 CrossRefGoogle Scholar
  16. 16.
    A.F. Otte, M. Ternes, S. Loth, C.P. Lutz, C.F. Hirjibehedin, A.J. Heinrich, Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203–107207 (2009). doi: 10.1103/PhysRevLett.103.107203 CrossRefGoogle Scholar
  17. 17.
    P. Han, A.R. Kurland, A.N. Giordano, S.U. Nanayakkara, M.M. Blake, C.M. Pochas, P.S. Weiss, Heads and tails: simultaneous exposed and buried interface imaging of monolayers. ACS Nano 3, 3115–3121 (2009). doi: 10.1021/nn901030x CrossRefGoogle Scholar
  18. 18.
    H.M. Saavedra, T.J. Mullen, P.P. Zhang, D.C. Dewey, S.A. Claridge, P.S. Weiss, Hybrid strategies in nanolithography. Rep. Prog. Phys. 73, 036501 (2010). doi: 10.1088/0034-4885/73/3/036501 CrossRefGoogle Scholar
  19. 19.
    A.M. Moore, A.A. Dameron, B.A. Mantooth, R.K. Smith, D.J. Fuchs, J.W. Ciszek, F. Maya, Y. Yao, J.M. Tour, P.S. Weiss, Molecular engineering and measurements to test hypothesized mechanisms in single-molecule conductance switching. J. Am. Chem. Soc. 128, 1959–1967 (2006). doi: 10.1021/ja055761m CrossRefGoogle Scholar
  20. 20.
    D.C. Coffey, D.S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mat. 5, 735–740 (2006). doi: 10.1038/nmat1712 CrossRefGoogle Scholar
  21. 21.
    D.A. Bonnell, S. Kalinin, Local potential at atomically abrupt oxide grain boundaries by scanning probe microscopy, in Solid State Phenomena, ed. by O. Bonnaud, T. Mohammed-Brahim, H.P. Strulnk, J.H. Werner (SciTech Publishing, Uettikon am See, 2001), pp. 33–47Google Scholar
  22. 22.
    D.B. Williams, D.B. Carter, Transmission Electron Microscopy, 2nd edn. (Springer, New York, 2009)CrossRefGoogle Scholar
  23. 23.
    M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced. Nature 392(6678), 768–769 (1998). doi: 10.1038/33823 CrossRefGoogle Scholar
  24. 24.
    H. Rose, Correction of aberrations. A promising means for improving the spatial and energy resolution of energy-filtering electron-microscopes. Ultramicroscopy 56(1–3), 11–25 (1994)CrossRefGoogle Scholar
  25. 25.
    A. Tonomura, T. Matsuda, J. Endo, H. Todokoro, T. Komoda, Development of a field emission electron microscope. J. Electron Microsc. Tokyo 28(1), 1–11 (1979)Google Scholar
  26. 26.
    B. Kabius, H. Rose, Novel Aberration Correction Concepts. Advances in Imaging and Electron Physics, vol. 153 (Elsevier, San Diego, 2008), pp. 261–281Google Scholar
  27. 27.
    P.E. Batson, N. Dellby, O.L. Krivanek, Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617–620 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen, Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Ångstrom information limit. Microsc. Microanal. 14(5), 469–477 (2008)CrossRefGoogle Scholar
  29. 29.
    O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff, An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179–195 (2008)CrossRefGoogle Scholar
  30. 30.
    D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 1073–1076 (2008). doi: 10.1126/science.1148820 CrossRefGoogle Scholar
  31. 31.
    S.J. Pennycook, M. Varela, C.J.D. Hetherington, A.I. Kirkland, Materials advances through aberration-corrected electron microscopy. MRS Bull. 31(1), 36–43 (2006)CrossRefGoogle Scholar
  32. 32.
    D.J. Smith, Development of aberration-corrected electron microscopy. Microsc. Microanal. 14(1), 2–15 (2008)Google Scholar
  33. 33.
    Y. Zhu, H. Inada, K. Nakamura, J. Wall, Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat. Mater. 8(10), 808–812 (2009). doi: 10.1038/nmat2532 CrossRefGoogle Scholar
  34. 34.
    C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)CrossRefGoogle Scholar
  35. 35.
    R.P. Feynman, There’s plenty of room at the bottom. Talk given at the annual meeting of the American Physical Society at the California Institute of Technology, Dec 1959. Available online: http://www.its.caltech.edu/~feynman/plenty.html
  36. 36.
    R. Erni, M.-D. Rossell, C. Kisielowski, U. Dahmen, Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009). doi: 10.1103/PhysRevLett.102.096101 CrossRefGoogle Scholar
  37. 37.
    C. Kisielowski, C.J.D. Hetherington, Y.C. Wanga, R. Kilaas, M.A. O’Keefe, A. Thust, Imaging columns of the light elements carbon, nitrogen and oxygen with sub Ångstrom resolution. Ultramicroscopy 89(4), 243–263 (2001)CrossRefGoogle Scholar
  38. 38.
    B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau, J. Zach, H. Rose, First application of C c-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc. 58(3), 147–155 (2009)CrossRefGoogle Scholar
  39. 39.
    O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571–574 (2010)CrossRefGoogle Scholar
  40. 40.
    R.M. Langford, A.K. Petford-Long, Broad ion beam milling of focused ion beam prepared transmission electron microscopy cross sections for high-resolution electron microscopy. J. Vac. Sci. Technol. A 19(3), 982–985 (2001)CrossRefGoogle Scholar
  41. 41.
    J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001). doi: 10.1038/35084037 CrossRefGoogle Scholar
  42. 42.
    M. Marko, C. Hsieh, R. Schalek, J. Frank, C. Mannella, Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Meth. 4(3), 215–217 (2007). doi: 10.1038/nmeth1014 CrossRefGoogle Scholar
  43. 43.
    J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32(5), 400–407 (2007)CrossRefGoogle Scholar
  44. 44.
    O.G. Shpyrko, E.D. Isaacs, J.M. Logan, Y. Feng, G. Aeppli, R. Jaramillo, H.C. Kim, T.F. Rosenbaum, P. Zschack, M. Sprung, S. Narayanan, A.R. Sandy, Direct measurement of antiferromagnetic domain fluctuations. Nature 447, 68–71 (2007)CrossRefGoogle Scholar
  45. 45.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)CrossRefGoogle Scholar
  46. 46.
    Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, Ó. Custance, S. Morita, Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156–159 (2005). doi: 10.1038/nmat1297 CrossRefGoogle Scholar
  47. 47.
    Lyding, J.W. Shen, T.C. Hubacek, J.S. Tucker, J.R. Abein, Nanoscale patterning and oxidation of H-passivated Si(100)-2  ×  1 surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994). doi: 10.1063/1.111722 CrossRefGoogle Scholar
  48. 48.
    K. Tanaka, Y. Kurihashi, T. Uda, Y. Daimon, N. Odagawa, R. Hirose, Y. Hiranaga, Y. Cho, Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage. Jpn. J. Appl. Phys. 47(5), 3311–3325 (2008)CrossRefGoogle Scholar
  49. 49.
    S. Kalinin, D. Bonnell, T. Alvarez, X. Lei, Z. Hu, J. Ferris, Q. Zhang, S. Dunn, Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett. 2, 589–594 (2002)CrossRefGoogle Scholar
  50. 50.
    D.B. Li, M.H. Zhao, J. Garra, A.M. Kolpak, A.M. Rappe, D.A. Bonnell, J.M. Vohs, Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater. 7, 473–477 (2008)CrossRefGoogle Scholar
  51. 51.
    P. Banerjee, P. Conklin, D. Nanayakkara, T.-H. Park, M.J. Therien, D.A. Bonnell, Plasmon-induced electrical conduction in molecular devices. ACS Nano 4(2), 1019–1025 (2010)CrossRefGoogle Scholar
  52. 52.
    D. Eigler, New Tools for Nanoscale Science and Engineering. Paper read at the workshop, international study of the long-term impacts and future opportunities for nanoscale science and engineering, Evanston, 9–10 Mar 2010Google Scholar
  53. 53.
    J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Imaging of transient structures using nanosecond in situ TEM. Science 321(5895), 1472–1475 (2008). doi: 10.1126/science.1161517 CrossRefGoogle Scholar
  54. 54.
    A.H. Zewail, Four-dimensional electron microscopy. Science 328(5975), 187–193 (2010). doi: 10.1126/science.1166135 CrossRefGoogle Scholar
  55. 55.
    F. Brizuela, S. Carbajo, A.E. Sakdinawat, Y. Wang, D. Alessi, B.M. Luther, W. Chao, Y. Liu, K.A. Goldberg, P.P. Naulleau, E.H. Anderson, D.T. Attwood Jr., M.C. Marconi, J.J. Rocca, C. S. Menoni, Improved performance of a table-top actinic full-field microscope with EUV laser illumination. Proc SPIE 7636 (2010)Google Scholar
  56. 56.
    S. Huh, L. Ren, D. Chan, S. Wurm, K. Goldberg, I. Mochi, T. Nakajima, M. Kishimoto, B. Ahn, I. Kang, J. Park, K. Cho, S.-I. Han, T. Laursen, A study of defects on EUV masks using blank inspection, patterned mask inspection, and wafer inspection. In Extreme Ultraviolet (EUV) Lithography. Proceedings of SPIE, vol 7636, ed. by B.M. La Fontaine (SPIE, San Jose, 2010).Google Scholar
  57. 57.
    K. Ushida, The future of optical lithography. Plenary talk, in SPIE Advanced Lithography conference, Santa Clara, 22 Feb 2010Google Scholar
  58. 58.
    Y. Kim, T. Komeda, M. Kawai, Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 89, 126104–126108 (2002). doi: 10.1103/PhysRevLett.89.126104 CrossRefGoogle Scholar
  59. 59.
    M.P. Nikiforov, S. Schneider, T.-H. Park, P. Milde, U. Zerweck, C. Loppacher, L. Eng, M.J. Therien, N. Engheta, D. Bonnell, Probing polarization and dielectric function of molecules with higher order harmonics in scattering–near-field scanning optical microscopy. J. Appl. Phys. 106, 114307 (2009). doi: 10.1063/1.3245392 CrossRefGoogle Scholar
  60. 60.
    C.L. Degen, M. Poggio, H.J. Mamin et al., Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 106(5), 1313–1317 (2009)CrossRefGoogle Scholar
  61. 61.
    P. Abbamonte, K.D. Finkelstein, M.D. Collins, S.M. Gruner, Imaging density disturbances in water with a 41.3-attosecond time resolution. Phys. Rev. Lett. 92, 237401 (2004). doi: 10.1103/PhysRevLett.92.237401 CrossRefGoogle Scholar
  62. 62.
    P. Prabhumirashi, V.P. Dravid, A.R. Lupini, M.F. Chisholm, S.J. Pennycook, Atomic-scale manipulation of potential barriers at SrTiO3 grain boundaries. Appl. Phys. Lett. 87(12), 121917–121920 (2005)CrossRefGoogle Scholar
  63. 63.
    U. Dahmen, R. Erni, V. Radmilovic, C. Ksielowski, M.-D. Rossell, P. Denes, Background, status and future of the transmission electron aberration-corrected microscope project. Philos. Trans. Math. Phys. Eng. Sci. 367(1903), 3795–3808 (2009)CrossRefGoogle Scholar
  64. 64.
    M.R. Castell, D.A. Muller, P.M. Voyles, Dopant mapping for the nanotechnology age. Nat. Mater. 2(3), 129–131 (2003). doi: 10.1038/nmat840 CrossRefGoogle Scholar
  65. 65.
    C.L. Jia, M. Lentzen, K. Urban, Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299(5608), 870–873 (2003)CrossRefGoogle Scholar
  66. 66.
    J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Imaging and dynamics of light atoms and molecules on graphene. Nature 454(7202), 319–322 (2008)CrossRefGoogle Scholar
  67. 67.
    P.A. Midgley, C. Durkan, The frontiers of microscopy. Mater. Today 11, 8–11 (2009)CrossRefGoogle Scholar
  68. 68.
    P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides Jr., S.J. Pennycook, Direct sub-Ångstrom imaging of a crystal lattice. Science 305(5691), 1741–1741 (2004)CrossRefGoogle Scholar
  69. 69.
    Y. Oshima, Y. Hashimoto, Y. Tanishiro, K. Takayanagi, H. Sawada, T. Kaneyama, Y. Kondo, N. Hashikawa, K. Asayama, Detection of arsenic dopant atoms in a silicon crystal using a spherical aberration corrected scanning transmission electron microscope. Phys. Rev. B 81(3), 035317–035322 (2010). doi: 10.1103/PhysRevB.81.035317 CrossRefGoogle Scholar
  70. 70.
    P.W. Hawkes, J.C.H. Spence (eds.), Science of Microscopy (Springer, New York, 2007)Google Scholar
  71. 71.
    M.D. Rossell, R. Erni, M. Asta, V. Radmilovic, U. Dahmen, Atomic-resolution imaging of lithium in Al3Li precipitates. Phys. Rev. B 80(2), 024110 (2009). doi: 10.1103/PhysRevB.80.024110 CrossRefGoogle Scholar
  72. 72.
    K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1(5), 415–418 (2009). doi: 10.1038/nchem.282 CrossRefGoogle Scholar
  73. 73.
    S.J.M. Thomas, The renaissance and promise of electron energy-loss spectroscopy. Angew. Chem. Int. Ed Engl. 48(47), 8824–8826 (2009)CrossRefGoogle Scholar
  74. 74.
    M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92(9) (2004). doi: 10.1103/PhysRevLett.92.095502
  75. 75.
    P.M. Voyles, J.L. Grazul, D.A. Muller, Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96(3–4), 251–273 (2003)CrossRefGoogle Scholar
  76. 76.
    A. Bartesaghi, P. Sprechmann, J. Liu, G. Randall, G. Sapiro, S. Subramaniam, Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol. 162(3), 436–450 (2008)CrossRefGoogle Scholar
  77. 77.
    M.J. Costello, Cryo-electron microscopy of biological samples. Ultrastruct. Pathol. 30(5), 361–371 (2006). doi: 10.1080/01913120600932735 CrossRefGoogle Scholar
  78. 78.
    N. de Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16(1), 54–63 (2010). doi: 10.1017/S1431927609991280 CrossRefGoogle Scholar
  79. 79.
    R.I. Koning, A.J. Koster, Cryo-electron tomography in biology and medicine. Ann. Anat. 191(5), 427–445 (2009). doi: 10.1016/j.aanat.2009.04.003 CrossRefGoogle Scholar
  80. 80.
    F. Xiao, Y. Cai, J.C.-Y. Wang, D. Green, R.H. Cheng, B. Demeler, P. Guo, Adjustable ellipsoid nanoparticles assembled from reengineered connectors of the bacteriophage Phi29 DNA packaging motor. ACS Nano 3(8), 2163–2170 (2009). doi: 10.1021/nn900187k CrossRefGoogle Scholar
  81. 81.
    A. Al-Amoudi, J.-J. Chang, A. Leforestier, A. McDowall, L.M. Salamin, L.P.O. Norlén, K. Richter, N. Sartori Blanc, D. Studer, J. Dubochet, Cryo-electron microscopy of vitreous sections. EMBO J. 23(18), 3583–3588 (2004)CrossRefGoogle Scholar
  82. 82.
    M. Beck, F. Förster, M. Ecke, J.M. Plitzko, F. Melchior, G. Gerisch, W. Baumeister, O. Medalia, Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306(5700), 1387–1390 (2004)CrossRefGoogle Scholar
  83. 83.
    M. Cyrklaff, A. Linaroudis, M. Boicu, P. Chlanda, W. Baumeister, G. Griffiths, J. Krijnse-Locker, Whole cell cryo-electron tomography reveals distinct disassembly intermediates of Vaccinia virus. PLoS ONE 2(5), e420 (2007). doi: 10.1371/journal.pone.0000420 CrossRefGoogle Scholar
  84. 84.
    K. Grunewald, P. Desai, D.C. Winkler, J.B. Heymann, D.M. Belnap, W. Baumeister, A.C. Steven, Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302(5649), 1396–1398 (2003)CrossRefGoogle Scholar
  85. 85.
    S. Nickell, F. Beck, A. Korinek, O. Mihalache, W. Baumeister, J. Plitzko, Automated cryoelectron microscopy of “single particles” applied to the 26S proteasome. FEBS Lett. 581(15), 2751–2756 (2007)CrossRefGoogle Scholar
  86. 86.
    A. Sartori, R. Gatz, F. Beck, A. Rigort, W. Baumeister, J. Plitzko, Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160(2), 135–145 (2007)CrossRefGoogle Scholar
  87. 87.
    K. Aoyama, T. Takagia, A. Hirasec, A. Miyazawa, STEM tomography for thick biological specimens. Ultramicroscopy 109(1), 70–80 (2008)CrossRefGoogle Scholar
  88. 88.
    M.F. Hohmann-Marriott, A.A. Sousa, A.A. Azari, S. Glushakova, G. Zhang, J. Zimmerberg, R.D. Leapman, Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat. Meth. 6(10), 729–732 (2009)CrossRefGoogle Scholar
  89. 89.
    K.J. Batenburg, S. Bals, J. Sijbers, C. Kübel, P.A. Midgley, J.C. Hernandez, U. Kaiser, E.R. Encina, E.A. Coronado, G. Van Tendeloo, 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109(6), 730–740 (2009)CrossRefGoogle Scholar
  90. 90.
    J.C. Gonzalez, J.C. Hernández, M. López-Haro, E. del Río, J.J. Delgado, A.B. Hungría, S. Trasobares, S. Bernal, P.A. Midgley, J.J. Calvino, 3D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed Engl. 48(29), 5313–5315 (2009)CrossRefGoogle Scholar
  91. 91.
    P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat. Mater. 8(4), 271–280 (2009)CrossRefGoogle Scholar
  92. 92.
    U. Ziese, C. Kübel, A. Verkleij, A.J. Koster, Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography. J. Struct. Biol. 138(1–2), 58–62 (2002)CrossRefGoogle Scholar
  93. 93.
    D.J. Stokes, L. Roussel, O. Wilhelmi, L.A. Giannuzzi, D.H.W. Hubert, Recent advances in FIB technology for nano-prototyping and nano-characterisation, in : Ion-Beam-Based Nanofabrication. MRS Proceedings, Vol. 1020, Paper No. 1020-GG01-05, ed. by D. Ila, J. Baglin, N. Kishimoto, P.K. Chu. (Materials Research Society, Warrendale, 2007)Google Scholar
  94. 94.
    Y. Fu, N.K.A. Bryan, Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling. J. Vac. Sci. Technol. B 22(4), 1672–1678 (2004)CrossRefGoogle Scholar
  95. 95.
    J. Fenn, The Microsoft System Software Hype Cycle Strikes Again (Gartner Group, Stamford, 1995)Google Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  • Dawn A. Bonnell
    • 1
  • Vinayak P. Dravid
    • 2
  • Paul S. Weiss
    • 3
  • David Ginger
    • 4
  • Keith Jackson
    • 5
  • Don Eigler
    • 6
  • Harold Craighead
    • 7
  • Eric Isaacs
    • 8
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.NUANCE CenterNorthwestern UniversityEvanstonUSA
  3. 3.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of ChemistryUniversity of WashingtonSeattleUSA
  5. 5.National High Magnetic Field LaboratoryTallahasseeUSA
  6. 6.IBM Almaden Research CenterSan JoseUSA
  7. 7.School of Applied and Engineering PhysicsCornell UniversityIthacaUSA
  8. 8.Argonne National LaboratoryArgonneUSA

Personalised recommendations