Applications: High-Performance Materials and Emerging Areas

  • Mark Hersam
  • Paul S. Weiss
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)


The field encompassed by the term “nanomaterials” has changed dramatically over the past 10 years. While it was useful in 2000 to describe nanomaterials on the sole basis of our ability to understand and to control matter at the nanoscale where material properties possess a distinct size-dependence, the field has now grown well beyond that earlier definition. For example, it is evident in 2010 that additional factors beyond constituent nanoparticles (e.g., high surface/interface area, proximity, and novel chemical, physical, and/or biological moieties) are also playing major roles. New work envisioned at the turn of the twenty-first century [1, 2] on organic-inorganic composite materials, multifunctional materials, self-healing materials, and nanoscale sensors has become a reality in the past 10 years, while exploratory ideas about bio-abiotic heterogeneous systems, information-nano-bio integration, ­electronic-neural interfaces, and nano-information-biological-cognitive systems [3] have received increased recognition in the scientific community and funding programs.


Nanocomposite Nanofibers Metamaterials Carbon nanotubes Nanomanufacturing Combinatorial Separation Purification Aeronautics Nanofluidics Nanostructured polymers Wood products International perspective 


  1. 1.
    M.C. Roco, R.S. Williams P. Alivisatos, IWGN workshop report: nanotechnology research directions (Kluwer, Dordrecht, 2000), Available online:
  2. 2.
    R.W. Siegel, E. Hu, M.C. Roco (eds.), Nanostructure Science and Technology. A Worldwide Study: WTEC Panel Report on R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices (Kluwer Academic Publishers, Dordrecht, 1999)Google Scholar
  3. 3.
    M.C. Roco, W.S. Bainbridge (eds.), Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science (Springer, Dordrecht, 2003), Available online:
  4. 4.
    T. Grafe, M. Gogins, M. Barris, J. Schaefer, R. Canepa, Nanofibers in filtration applications in transportation. Presented at Filtration 2001 International Conference and Exposition of the INDA (Association of the Nonwoven Fabrics Industry), Chicago, 3–5 Dec 2001, Available online:
  5. 5.
    T. Yuranova, R. Mosteo, J. Bandata, D. Laub, J. Kiwi, Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J. Mol. Catal. A Chem. 244, 160 (2006)CrossRefGoogle Scholar
  6. 6.
    National Aeronautics and Space Administration (NASA), “Spinoff” (brochure), (2009), Available online:
  7. 7.
    A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651–656 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Li, F. Ebrahimi, Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4037–4039 (2004). doi: 10.1063/1.1756198 Google Scholar
  9. 9.
    T.C. Lowe, R.Z. Valiev, The use of severe plastic deformation techniques in grain refinement. J. Miner. Met. Mater. Soc. 56(10), 64–68 (2004)Google Scholar
  10. 10.
    C.C. Koch, K.M. Youssef, R.O. Scattergood, K.L. Murty, Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys. Adv. Eng. Mater. 7(9), 787–794 (2005). doi: 10.1002/adem.200500094 CrossRefGoogle Scholar
  11. 11.
    H. Li, F. Ebrahimi, Tensile behavior of a nanocrystalline Ni–Fe alloy. Acta Mater. 54(10), 2877–2886 (2006). doi: 10.1016/j.actamat.2006.02.033 CrossRefGoogle Scholar
  12. 12.
    M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Deformation twinning in nanocrystalline aluminum. Science 300(5623), 275–1277 (2003). doi: 10.1126/science.1083727 CrossRefGoogle Scholar
  13. 13.
    X. Wu, Y.T. Zhu, M.W. Chen, E. Ma, Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr. Mater. 54(9), 1685–1690 (2006). doi: 10.1016/j.scriptamat.2005.12.045 CrossRefGoogle Scholar
  14. 14.
    D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials. Z. Metallkd. 94, 1091–1097 (2003)Google Scholar
  15. 15.
    Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Grain boundary mediated plasticity in nanocrystalline nickel. Science 305(5684), 654–657 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Van Swygenhoven, P.A. Derlet, Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. 64(22), 1–7 (2001)Google Scholar
  17. 17.
    H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54(7), 1975–1983 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Cahn, Y. Mishinb, A. Suzukib, Coupling grain boundary motion to shear formation. Acta Mater. 54(19), 4953–4975 (2006)CrossRefGoogle Scholar
  19. 19.
    A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51, 2097–2112 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Jin, A.M. Minor, E.A. Stach, J.W. Morris, Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52(18), 5381–5387 (2004)CrossRefGoogle Scholar
  21. 21.
    F. Mompiou, D. Caillard, M. Legros, Grain boundary shear–migration coupling – I. In situ TEM straining experiments in Al polycrystals. Adv. Mater. 57(7), 2198–2209 (2009)Google Scholar
  22. 22.
    K. Zhang, J.R. Weertman, J.A. Eastman, Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87(6), 19–21 (2005). doi: 10.1063/1.2008377 Google Scholar
  23. 23.
    A. Hasnaoui, H. Van Swygenhoven, P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Mater. 50(15), 3927–3939 (2002)CrossRefGoogle Scholar
  24. 24.
    F. Ebrahimi, H. Li, The effect of annealing on deformation and fracture of a nanocrystalline fcc metal. J. Mater. Sci. 42(5), 1444–1454 (2007). doi: 10.1007/s10853-006-0969-8 CrossRefGoogle Scholar
  25. 25.
    H. Li, H. Choo, Y. Ren, T. Saleh, U. Lienert, P. Liaw, F. Ebrahimi, Strain-dependent deformation behavior in nanocrystalline metals. Phys. Rev. Lett. 101(1), 015502–015506 (2008). doi: 10.1103/PhysRevLett.101.015502 CrossRefGoogle Scholar
  26. 26.
    E. Biztek, P.M. Derlet, P.M. Anderson, H. Van Swygenhoven, The stress-strain response of nanocrystalline metals: a statistical analysis of atomistic simulation. Acta Mater. 56(17), 4846–4857 (2008)CrossRefGoogle Scholar
  27. 27.
    F. Ebrahimi, Z. Ahmed, K.L. Morgan, Effect of grain size distribution on tensile properties of electrodeposited nanocrystalline nickel. Proc. Mater. Res. Soc. 634, B2.7.1 2001Google Scholar
  28. 28.
    B. Raeisinia, C. Sinclar, W. Poole, C. Tomé, On the impact of grain size distribution on the plastic behavior of polycrystalline metals. Modell. Simul. Mater. Sci. Eng. 16, 025001 (2008). doi: 10.1088/0965-0393/16/2/025001 CrossRefGoogle Scholar
  29. 29.
    Y. Zhao, X. Liao, S. Cheng, E. Ma, Y. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18(17), 2280–2283 (2006). doi: 10.1002/adma.200600310 CrossRefGoogle Scholar
  30. 30.
    F. Ebrahimi, A. Liscano, D. Kong, Q. Zhai, H. Li, Fracture of bulk face centered cubic metallic nanostructures. Rev. Adv. Mater. Sci. 13, 33–40 (2006), Available online: Google Scholar
  31. 31.
    H. Li, F. Ebrahimi, Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17(16), 1969–1972 (2005). doi: 10.1002/adma.200500436 CrossRefGoogle Scholar
  32. 32.
    R.W.K. Honeycombe, Plastic Deformation of Metals (E. Arnold Publisher, London, 1984)Google Scholar
  33. 33.
    A. Kelly, N.H. MacMillan, Strong Solids (Clarendon, Oxford, 1986)Google Scholar
  34. 34.
    W.D. Nix, Exploiting new opportunities in materials research by remembering and applying old lessons. MRS Bull. 34(2), 82–91 (2009)CrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, H. Li, Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scr. Mater. 55(3), 263–266 (2006). doi: 10.1016/j.scriptamat.2006.03.05 CrossRefGoogle Scholar
  36. 36.
    C. Koch, R. Scattergood, K. Darling, J. Semones, Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43(23–24), 7264–7272 (2008)CrossRefGoogle Scholar
  37. 37.
    American Forest and Paper Association (AF&PA) and Energetics, Inc., Nanotechnology for the Forest Products Industry: Vision and Technology Roadmap (TAPPI Press, Atlanta, 2005), Available online:
  38. 38.
    J.P.E. Jones, T. Wegner, Wood and paper as materials for the 21st century. Proc. Mater. Res. Soc., 1187-KK04-06, (2009). doi: 10.1557/PROC-1187-KK04-06
  39. 39.
    M.T. Postek, A. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo, T.H. Wegner, J. Beecher, Cellulose nanocrystals the next big nano-thing? Proc. SPIE 7042, 1–11 (2008). doi: 10.1117/12.797575 Google Scholar
  40. 40.
    C. Tamerler, M. Sarikaya, Molecular biomimetics: genetic synthesis, assembly, and formation of materials using peptides. MRS Bull. 33, 504–512 (2008), Available online:
  41. 41.
    S.A. Claridge, A.W. Castleman, S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, Cluster-assembled materials. ACS Nano 3, 244–255 (2009). doi: 10.1021/nn800820e CrossRefGoogle Scholar
  42. 42.
    R. Krupke, F. Hennrich, H. Lonheysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631), 344–347 (2003). doi: 10.1126/science.300.5628.2018 CrossRefGoogle Scholar
  43. 43.
    M.S. Strano, C.A. Dyke, M.L. Ursey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley, Electronic structure control of single-walled carbon nanotube functionalization. Science 301(5639), 1519–1522 (2003). doi: 10.1126/science.1087691 CrossRefGoogle Scholar
  44. 44.
    G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H. Dai, Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314(5801), 974–977 (2006). doi: 10.1126/science.1133781 CrossRefGoogle Scholar
  45. 45.
    P.G. Collins, M. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001). doi: 10.1126/science.1058782 CrossRefGoogle Scholar
  46. 46.
    M. Zheng, A. Jagota, M. Strano, A. Santos, P. Barone, S. Chou, B. Diner, M.S. Dresselhaus, R. McLean, G. Onoa, G. Samsonidze, E. Semke, M. Usrey, D. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650), 1545–1548 (2003). doi: 10.1126/science.1091911 CrossRefGoogle Scholar
  47. 47.
    M. Zheng, E. Semke, Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129(19), 6084–6085 (2007). doi: 10.1021/ja071577k CrossRefGoogle Scholar
  48. 48.
    M. Arnold, A. Green, J. Hulvat, S. Stupp, M. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006). doi: 10.1038/nnano.2006.52, Available online:
  49. 49.
    M. Arnold, S. Stupp, M. Hersam, Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005)CrossRefGoogle Scholar
  50. 50.
    J.M. Graham, Biological Centrifugation (BIOS Scientific, Oxford, 2001)Google Scholar
  51. 51.
    B. Kitiyanan, W. Alvarez, J. Harwell, D. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic CoMo catalysts, Chem. Phys. Lett. 317, 497–503 (2000), Available online:
  52. 52.
    M. Engel, J. Small, M. Steiner, M. Freitag, A. Green, M. Hersam, P. Avouris, Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2(12), 2445–2452 (2008). doi: 10.1021/nn800708w CrossRefGoogle Scholar
  53. 53.
    A. Green, M. Hersam, Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 8(5), 1417–1422 (2008). doi: 10.1021/nl080302f CrossRefGoogle Scholar
  54. 54.
    J. Crochet, M. Clemens, T. Hertel, Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129(26), 8058–8059 (2007). doi: 10.1021/ja071553d CrossRefGoogle Scholar
  55. 55.
    Z. Zhu, J. Crochet, M. Arnold, M. Hersam, H. Ulbricht, D. Resasco, T. Hertel, Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007)CrossRefGoogle Scholar
  56. 56.
    J. Tang, L. Brzozowski, D. Aaron, R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. Pattantyus-Abraham, D. Jamakosmanovic, E.H. Sargent, Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano 4, 869–878 (2010). doi: 10.1021/nn901564q CrossRefGoogle Scholar
  57. 57.
    K. Greene, Quantum dot camera phones. MITS Technol. Rev., 22 Mar 2010, Available online:
  58. 58.
    G. Konstantatos, L. Levina, A. Fischer, E.H. Sargent, Engineering the temporal response of photonconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008)CrossRefGoogle Scholar
  59. 59.
    J.P. Clifford, G. Konstantatos, K.W. Johnston, S. Hoogland, L. Levina, E.H. Sargent, Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40–44 (2008)CrossRefGoogle Scholar
  60. 60.
    H.G. Chae, S. Kumar, Materials science: making strong fibers. Science 319, 908–909 (2008). doi: 10.1126/science.1153911 CrossRefGoogle Scholar
  61. 61.
    S.G. Miller, M.A. Meador, Polymer-layered silicate nanocomposites for cryotank applications, in Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, 2007Google Scholar
  62. 62.
    S.A. Getty, T.T. King, R.A. Bis, H.H. Jones, F. Herrero, B.A. Lynch, P. Roman, P.R. Mahaffy, Performance of a carbon nanotube field emission electron gun. Proc. SPIE 6556, 18 (2007). doi: 10.1117/12.720995 Google Scholar
  63. 63.
    R.A. Vaia, J.F. Maguire, Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem. Mater. 19, 2736 (2007)CrossRefGoogle Scholar
  64. 64.
    K. Winey, R. Vaia (eds.), Polymer nanocomposites. MRS Bull. 32, 314–322 (2007), Available online:
  65. 65.
    Y. Li, B.C. Benicewicz, Functionalization of silica nanoparticles via the combination of surface-initiated RAFT polymerization and click reactions. Macromolecules 41, 7986–7992 (2008)CrossRefGoogle Scholar
  66. 66.
    A. Jayaraman, K.S. Schweizer, Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles. Langmuir 24, 11119 (2008a)CrossRefGoogle Scholar
  67. 67.
    A. Jayaraman, K.S. Schweizer, Structure and assembly of dense solutions and melts of single tethered nanoparticles. J. Chem. Phys. 128, 164904 (2008b)CrossRefGoogle Scholar
  68. 68.
    P. Acora, H. Liu, S.K. Kumar, J. Moll, Y. Li, B.C. Benicewicz, L.S. Schadler, D. Acehin, A.Z. Panagiotopoulos, A.V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R.H. Colby, J.F. Douglas, Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 8, 354 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations