Applications: Catalysis by Nanostructured Materials

  • Evelyn L. Hu
  • S. Mark Davis
  • Robert Davis
  • Erik Scher
Chapter
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)

Abstract

The 1999 Nanotechnology Research Directions report included nanoscale catalysis as one aspect of applications of nanotechnology to the energy and chemicals industries [1]. The vision centered on the recognition that “new properties intrinsic to nanostructures” could lead to breakthroughs in catalysis with high selectivity at high yield. An example cited in that report was the observation that, while bulk gold is largely unreactive, highly selective catalytic activity could be observed for gold nanoparticles smaller than about 3–5 nm in diameter [2]. Nanoparticles and nano-structured materials have traditionally played a critical role in the effectiveness of industrial catalysts [3], but the past decade has witnessed significant advances in the control of nanoscale materials and the characterization and in situ probing of catalytic processes at the atomic, active site scale.

Keywords

Catalysis Nanostructured catalysts Synthesis methods Fuel cells International perspective 

References

  1. 1.
    M.C. Roco, S. Williams, P. Alivisatos, Nanotechnology Research Directions: IWGN Workshop Report (WTEC, Baltimore, 1999)Google Scholar
  2. 2.
    M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36(1), 153–160 (1997). doi: 10.1016/S0920-5861(96)00208-8 CrossRefGoogle Scholar
  3. 3.
    A.Y. Bell, The impact of nanoscience on heterogeneous catalysis. Science 14, 1688–1691 (2003). doi: 10.1126/science.1083671 CrossRefGoogle Scholar
  4. 4.
    M. Davis, D. Tilley, Future directions in catalysis (National Science Foundation, Washington, 2003)Google Scholar
  5. 5.
    R. Davis, V.V. Guliants, G. Huber, R.F. Lobo, J.T. Miller, M. Neurock, R. Sharma, L. Thompson, An international assessment of research in catalysis by nanostructured materials (WTEC, Baltimore, 2009), Available online: http://www.wtec.org/catalysis/WTEC-CatalysisReport-6Feb2009-color-hi-res.pdf
  6. 6.
    M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D.H. Choi, R. Ryoo, Amphiphilic organosiline-directed synthesis of crystalline zeolites with tunable mesoporosity. Nat. Mater. 5(9), 718–723 (2006). doi: 10.1038/nmat1705 CrossRefGoogle Scholar
  7. 7.
    C. Christensen, I. Schmidt, A. Carlsson, K. Johanssen, K. Herbst, Crystals in crystals. J. Am. Chem. Soc. 127, 8098–8102 (2005)CrossRefGoogle Scholar
  8. 8.
    D. Li, D. Su, J. Song, X. Guan, K. Hofmann, F.S. Xiao, Highly stream-stable mesoporous silica assembles from preformed zeolite precursors at high temperature. J. Mater. Chem. 15, 5063–5069 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Corma, M. Diaz-Cabana, J. Jorda, C. Martinez, M. Moliner, High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006). doi: 10.1038/nature05238 CrossRefGoogle Scholar
  10. 10.
    F. Berhault, L. Bisson, C. Thomazeau, C. Verdon, D. Uzio, Preparation of nanostructured Pd particles using a seeding synthesis approach. Appl. Catal. A 327(1), 32–43 (2007). doi: 10.1016/j.apcata.2007.04.028 CrossRefGoogle Scholar
  11. 11.
    E. Aneggi, J. Llorca, M. Boaro, A. Trovarelli, Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J. Catal. 234(1), 88–95 (2005). doi: 10.1016/j.jcat.2005.06.008 CrossRefGoogle Scholar
  12. 12.
    I. Lee, F. Delbecq, F. Morales, M. Albiter, F. Zaera, Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 8, 132–138 (2008). doi: 10.1038/nmat2371 CrossRefGoogle Scholar
  13. 13.
    C. Witham, W. Huang, C. Tsung, J. Kuhn, G. Somorjai, F. Toste, Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2, 36–41 (2010). doi: 10.1038/nchem.468 CrossRefGoogle Scholar
  14. 14.
    M. Salmeron, R. Schlogl, Ambient pressure photoelectron spectroscopy. Surf. Sci. Rep. 63(4), 169–199 (2008). doi: 10.1016/j.surfrep. 2008.01.001 CrossRefGoogle Scholar
  15. 15.
    P. Hansen, J. Wagner, S. Helveg, J. Rostrop-Nielsen, B. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 15, 2053–2055 (2002). doi: 10.1126/science.1069325 CrossRefGoogle Scholar
  16. 16.
    J. Norskov, T. Bligaard, J. Rossmeis, C. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). doi: 10.1038/nchem.121 CrossRefGoogle Scholar
  17. 17.
    The Catalyst Group Resources, Understanding Nano-Scale Catalytic Effects. CAP Client-Private Report (The Catalyst Group, Spring House, 2010)Google Scholar
  18. 18.
    The Catalyst Group Resources, Advances in Nanocatalysts and Products. CAP Client-Private Technical Report (The Catalyst Group, Spring House, 2002)Google Scholar
  19. 19.
    The Catalyst Group Resources, Intelligence report: Business Shifts in the Global Catalytic Process Industries, 2007–2013. CAP Client-Private Report (The Catalyst Group, Spring House, 2008)Google Scholar
  20. 20.
    J. Haggin, Chemists seek greater recognition for catalysis. Chem. Eng. News 71(22), 23–27 (1993). May 31 http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6347886 CrossRefGoogle Scholar
  21. 21.
    V. Kroll, H. Swaan, C. Mirodatos, Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst-I. Deactivation studies. J. Catal. 161(1), 409–422 (1996). doi: 10.1006/jcat.1996.0199 CrossRefGoogle Scholar
  22. 22.
    T. Ren, M. Patel, Basic petrochemicals from natural gas, coal and biomass. Resour. Conserv. Recycl. 53(9), 513–528 (2009). doi: 10.1016/j.resconrec.2009.04.005 CrossRefGoogle Scholar
  23. 23.
    M. Ruth, A. Amato, B. Davidsdottir, Carbon emissions from U.S. ethylene production under climate change policies. Environ. Sci. Technol. 36(2), 119–124 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Labinger, Oxidative coupling of methane. Catal. Lett. 1, 371–375 (1988). doi: 10.1007/BF00766166 CrossRefGoogle Scholar
  25. 25.
    M. Roeffaers, B. Sels, H. Uji-i, F. DeSchryver, P. Jacobs, D. Devos, J. Hofkens, Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006). doi: doi:10.1038/nature04502 CrossRefGoogle Scholar
  26. 26.
    W. Xu, J. Kong, Y.T. Yeh, P. Chen, Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008). doi: 10.1038/nmat2319 CrossRefGoogle Scholar
  27. 27.
    J. Santiesteban, T. Degnan, M. Daage, Advanced catalysts for the petroleum refining and petrochemical industries. Paper presented at the14th International Congress on Catalysis, Seoul, 2008Google Scholar
  28. 28.
    Haldor Topsoe, Corporate Web site (2010), http://www.topsoe.com/research/Research_at_Topsoe.aspx
  29. 29.
    J. Laurisen, J. Kibsgaard, S. Helveg, H. Topsoe, B. Clausen, E. Laegsgaard, F. Besenbacher, Size-dependent structure of MOS2 nanocrystals. Nat. Nanotechnol. 2(1), 53–58 (2007)CrossRefGoogle Scholar
  30. 30.
    K. Svennerber, From science to proven technology – development of a new topsoe methanol synthesis catalyst MK-151. Paper presented at the 2009 World Methanol Conference, Miami, 2009Google Scholar
  31. 31.
    Headwaters NanoKinetix, Inc. n.d. Corporate Web site, http://www.htigrp.com/nano.asp
  32. 32.
    M. Rueter, B. Zhou, S. Parasher, Process for direct catalytic hydrogen peroxide production. U.S. Patent 7,144,565, 2006Google Scholar
  33. 33.
    B. Zhou, M. Rueter, S. Parasher, Supported catalysts having a controlled coordination structure and methods for preparing such catalysts. U.S. Patent 7,011,807, 2006Google Scholar
  34. 34.
    S.M. Davis, F. Zaera, G.F. Somorjai, Surface structure and temperature dependence of n-hexane skeletal rearrangement reactions. J. Catal. 85(1), 206–223 (1984). doi: 10.1016/0021-9517(84)90124-6 CrossRefGoogle Scholar
  35. 35.
    H. Trevino, Z. Zhou, Z. Wu, B. Zhou, Reforming nanocatalysts and methods of making and using such catalysts. U.S. Patent 7,541,309, 2009Google Scholar
  36. 36.
    B. Zhou, M. Rueter, Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure. U.S. Patent 6,746,597, 2004Google Scholar
  37. 37.
    B. Zhou, H. Trevino, Z. Wu, Reforming catalysts having a controlled coordination structure and methods for preparing such compositions. U.S. Patent 7.655,137, 2010Google Scholar
  38. 38.
    B. Zhou, H. Trevino, Z. Wu, Z. Zhou, C. Liu, Reforming nanocatalysts and method of making and using such catalysts. U.S. Patent 7,569,508, 2009Google Scholar
  39. 39.
    Z. Zhou, Z. Wu, C. Zhang, B. Zhou, Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure. U.S. Patent 7,601,668, 2009Google Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  • Evelyn L. Hu
    • 1
  • S. Mark Davis
    • 2
  • Robert Davis
    • 3
  • Erik Scher
    • 4
  1. 1.Harvard School of Engineering and Applied SciencesCambridgeUSA
  2. 2.ExxonMobil Chemical R&DIrvingUSA
  3. 3.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.SiluriaPalo AltoUSA

Personalised recommendations