Applications: Nanophotonics and Plasmonics

  • Evelyn L. Hu
  • Mark Brongersma
  • Adra Baca
Part of the Science Policy Reports book series (SCIPOLICY, volume 1)


Both nanophotonics and plasmonics concern investigations into building, manipulating, and characterizing optically active nanostructures with a view to creating new capabilities in instrumentation for the nanoscale, chemical and biomedical sensing, information and communications technologies, enhanced solar cells and lighting, disease treatment, environmental remediation, and many other applications. Photonics and plasmonics share the characteristic that at least some of their basic concepts have been known for 40–50 years, but they have come into their own only in the last 10 years, based on recent discoveries in nanoscience. Photonic materials and devices have played a pervasive role in communications, energy conversion, and sensing since the 1960s and 1970s. Photonics at the nanoscale, or nanophotonics might be defined as “the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the physical, chemical, or structural nature of natural or artificial nanostructure matter controls the interactions” [1]. Broadly speaking, over the next 10 years nanophotonic structures and devices promise dramatic reductions in energies of device operation, densely integrated information systems with lower power dissipation, enhanced spatial resolution for imaging and patterning, and new sensors of increased sensitivity and specificity.


Nanophotonics Plasmonics Micro- and Nanocavities Circuits International perspective 


  1. 1.
    National Research Council of the National Academies (NRC), Nanophotonics: Accessibility and Applicability (National Academies Press, Washington, DC, 2008)Google Scholar
  2. 2.
    W.D. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Brongersma, V. Shalaev, The case for plasmonics. Science 328, 440–441 (2010)CrossRefGoogle Scholar
  4. 4.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010). doi: 10.1038/nmat2630 CrossRefGoogle Scholar
  5. 5.
    M. Roco, S. Williams, P. Alivisatos (eds.), Nanotechnology Research Directions: Vision for Nanotechnology R&D in the Next Decade. (NSTC/Springer, Washington, DC, 1999), previously Kluwer, 2000. Available online:
  6. 6.
    R.D. Dupuis, P.D. Dapkus, N. Holonyak, E.A. Rezek, R. Chin, Room-temperature laser operation of quantum-well Ga(1-x)Al(x)As-GaAs laser diodes grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 32(5), 295–299 (1978). doi: 10.1063/1.90026 CrossRefGoogle Scholar
  7. 7.
    E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987). Available online: CrossRefGoogle Scholar
  8. 8.
    V.G. Veselago, Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov. Phys. USPEKHI USSR 10, 509–514 (1968)CrossRefGoogle Scholar
  9. 9.
    M.C. Albrecht, J.A. Creighton, Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)CrossRefGoogle Scholar
  10. 10.
    D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry, 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 82(1), 1–20 (1977). doi: 10.1016/S0022-0728(77)80224-6 CrossRefGoogle Scholar
  11. 11.
    M. Brongersma, Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. in MRS. Symposium Proceedings H (Molecular Electronics), vol 582, Boston, 1999, p 502Google Scholar
  12. 12.
    B.-S.S. Song, T.A. Noda, Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005). doi: 10.1038/nmat1320 CrossRefGoogle Scholar
  13. 13.
    H.K. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94(7), 073903/1–4 (2005). doi: 10.1103/PhysRevLett.94.073903 CrossRefGoogle Scholar
  14. 14.
    M.Y. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902/1–4 (2001). doi: 10.1103/PhysRevLett.87.253902
  15. 15.
    Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005). doi: 10.1038/nature04210 CrossRefGoogle Scholar
  16. 16.
    T. Krauss, Slow light in photonic crystal waveguides. J. Phys. D 40(9), 2666–2670 (2007). doi: 10.1088/0022-3727/40/9/S07 CrossRefGoogle Scholar
  17. 17.
    K.B. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007). doi: 10.1038/nature05586 CrossRefGoogle Scholar
  18. 18.
    J.S. Reithmaier, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)CrossRefGoogle Scholar
  19. 19.
    T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal cavity. Nature 432, 200–203 (2004). doi: 10.1038/nature03119 CrossRefGoogle Scholar
  20. 20.
    M.H. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). doi: 10.1016/0009-2614(74)85388-1 CrossRefGoogle Scholar
  21. 21.
    M. Moskovits, Surface-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4162 (1978). doi: 10.1063/1.437095 CrossRefGoogle Scholar
  22. 22.
    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475–477 (1997). doi: 10.1364/OL.22.000475 CrossRefGoogle Scholar
  23. 23.
    T.L. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570 CrossRefGoogle Scholar
  24. 24.
    J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). doi: 10.1103/PhysRevLett.85.3966 CrossRefGoogle Scholar
  25. 25.
    V.M. Shalaev, Transforming light. Science 322, 384–386 (2008). doi: 10.1126/science.1166079 CrossRefGoogle Scholar
  26. 26.
    P.R. West,S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photon. Rev. 1–13, (2010). doi:10.1002/lpor.200900055Google Scholar
  27. 27.
    W.P. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009). doi: 10.1038/nphoton.2009.2 CrossRefGoogle Scholar
  28. 28.
    L.S. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003). doi: 10.1073/pnas.2232479100 CrossRefGoogle Scholar
  29. 29.
    L.B. Cao, D.N. Barsic, A.R. Guichard, Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7(11), 3523–3527 (2007)CrossRefGoogle Scholar
  30. 30.
    H.P. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2009)CrossRefGoogle Scholar
  31. 31.
    R.W. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009). doi: 10.1002/adma.200900331 CrossRefGoogle Scholar
  32. 32.
    W.W. Cai, J.S. White, M.L. Brongersma, Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9(12), 4403–4411 (2009)CrossRefGoogle Scholar
  33. 33.
    L.S. Tang, E. Kocabas, S. Latif, A.K. Okyay, D.-S. Ly-Gagnon, K.C. Saraswat, D.A.B. Miller, Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2, 226–229 (2008). doi: 10.1038/nphoton.2008.30 CrossRefGoogle Scholar
  34. 34.
    L.W. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009). doi: 10.1038/nmat2477 CrossRefGoogle Scholar
  35. 35.
    J.A. Schuller, T. Taubner, M.L. Brongersma, Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009). doi: 10.1038/nphoton.2009.188 CrossRefGoogle Scholar
  36. 36.
    R. Zia, J.A. Schuller, A. Chandran, M.L. Brongersma, Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006)CrossRefGoogle Scholar
  37. 37.
    A.M. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin, Generation of single optical plasmons in metallic nanowired coupled to quantum dots. Nature 450, 402–406 (2007)CrossRefGoogle Scholar
  38. 38.
    A.J. Hryciw, Y.C. Jun, M.L. Brongersma, Electrifying plasmonics on silicon. Nat. Mater. 9, 3–4 (2010). doi: 10.1038/nmat2598 CrossRefGoogle Scholar
  39. 39.
    D.S. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation. Phys. Rev. Lett. 90, 027402 (2003)CrossRefGoogle Scholar
  40. 40.
    M.T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P.J. van Veldhoven, F.W.M. van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. de Waardt, E.J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, M.K. Smit, Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589–594 (2007). doi: 10.1038/nphoton.2007.171 CrossRefGoogle Scholar
  41. 41.
    M.Z. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). doi: 10.1038/nature08318 CrossRefGoogle Scholar
  42. 42.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). doi: 10.1038/nature08364 CrossRefGoogle Scholar
  43. 43.
    N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007). doi: 10.1126/science.1133268 CrossRefGoogle Scholar
  44. 44.
    V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)CrossRefGoogle Scholar
  45. 45.
    H. Hogan, Silicon photonics could save the computer industry. Photon. Spectra (Mar), 36 (2010), Available online:
  46. 46.
    R.F. Service, Ever-smaller lasers pave the way for data highways made of light. Science 328, 810 (2010)CrossRefGoogle Scholar
  47. 47.
    A. Cho, Putting light’s light touch to work as optics meets mechanics. Science 328(5980), 812 (2010). doi: 10.1126/science.328.5980.812 CrossRefGoogle Scholar
  48. 48.
    M. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004–024021 (2010). doi: 10.1088/2040-8978/12/2/024004 CrossRefGoogle Scholar
  49. 49.
    K. Kelleher, Engineers light up cancer research. Emerging medicine: scientists design gold “nanoshells” that seek and destroy tumors. PopSci. (2003). Posted 6 Nov 2003. Retrieved 30 May 2010 from–11/engineers-light-cancer-research
  50. 50.
    M. Foster, R. Salem, D. Geraghty, A. Turner-Foster, M. Lipson, A. Gaeta, Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). doi: 10.1038/nature07430 CrossRefGoogle Scholar
  51. 51.
    J. Levy, A. Gondarenko, M. Foster, A. Gaeta, M. Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2009). doi: 10.1038/nphoton.2009.259 CrossRefGoogle Scholar
  52. 52.
    MONA Consortium, Merging optics and nanotechnologies: a European roadmap for photonics and nanotechnologies (2008), Available online:
  53. 53.
    Nanophotonics Europe Organization, Lighting the way ahead. Photonics 21: second strategic research agenda in photonics. (European Technology Platform Photonics21, Dieseldorf, 2010), Available online:
  54. 54.
    PhOREMOST Network of Excellence, Emerging Nanophotonics (PhOREMOST, Cork, 2008)Google Scholar
  55. 55.
    F. Xia, L. Sekaric, Y. Vlasov, Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65–71 (2007). doi: 10.1038/nphoton.2006.42 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business B.V. 2011

Authors and Affiliations

  1. 1.Harvard School of Engineering and Applied SciencesCambridgeUSA
  2. 2.Stanford UniversityStanfordUSA
  3. 3.Corning, Inc.CorningUSA

Personalised recommendations