Skip to main content

Renaissance and Scientific Revolution

  • Chapter
History of Rotating Machinery Dynamics

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 20))

  • 3854 Accesses

Abstract

Technology has been traditionally the realm of craftsmen working by rough rules of trial and error. The existing knowledge base was a mass of confusion in the absence of a unified understanding of the behavioral motion of solids and fluids [7, 31, 35]. The man of knowledge was a natural philosopher rather than a scientist.

The reawakening of scientific thought was brought about during the Renaissance Period (1400-1600) and carried into the period of the scientific revolution. Leonardo da Vinci (1452-1519) has recently been credited for some fundamental contributions to solid mechanics, fluid mechanics and mechanical design much before the scientific revolution. His contributions appear in Codex Madrid I, one of two remarkable notebooks that were discovered in 1967 in the National Library of Spain (Madrid), after being misplaced for nearly 500 years, see [1, 45]. He correctly concluded that, in bending of beams due to transverse loads, plane cross-sections remain plane before and after bending and rotate as shown in Figure 5.1. Da Vinci lacked Hooke’s law and calculus to complete the theory; we had to wait for Galileo to improve this further before Euler and Bernoulli formed correct equations for simple bending.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballarini, R.: The Da Vinci–Euler–Bernoulli Beam Theory? ME Magazine (2003), http://www.memagazine.org/contents/current/webonly/webex418.html

  2. Bernoulli, J.: Curvatura Laminae Elasticae, Acta Eruditorum, Lipsiae (June 1694)

    Google Scholar 

  3. Bernoulli, J.: Discours sur les loix de la communication du mouvement, ch. 1-3. Prize Essay, Paris (1724)

    Google Scholar 

  4. Bernoulli, Daniel (1751) De vibrationibus et sono laminarum elasticarum commentationes physico-geometricae, Commentari Academiae Scientiarum Imperialis Petropolitanae. T.13 ad annum 1741 p. 43. p. 105.

    Google Scholar 

  5. Bruce, S.E. (1982) Kepler as Historian of Science: Precursors of Copernican Heliocentrism According to De revolutionibus, Proceedings of the American Philosophical Society, 126, p. 367.

    Google Scholar 

  6. Bucciarelli, L.L. and Dworsky, N. (1980) Sophie Germain: An Essay in the History of the Theory of Elasticity, Springer.

    Google Scholar 

  7. Butterfield, H. (1965) The Origins of Modern Science, 1300–1800, Free Press.

    Google Scholar 

  8. Chladini, E.F.F. (1787) Entdeckungen über die Theorie des Klanges.

    Google Scholar 

  9. Clagett, M. (1961) The Science of Mechanics in the Middle Ages, University of Wisconsin Press.

    Google Scholar 

  10. Cohen, H.F. (1994) The Scientific Revolution: A Historiographical Enquiry, University of Chicago Press.

    Google Scholar 

  11. Coulomb, C.A. (1784) Recherches théoriques et expérimentales sur la force de torsion, & sur l’élasticité des fils de métal: Application de cette théorie à l’emploi des métaux dans les Arts & dans Jonathan A. Hill, Bookseller, Inc., USA.

    Google Scholar 

  12. D’Alembert, J.L. (1743) Traite de Dynamique.

    Google Scholar 

  13. Descartes, René (1984–1991) The Philosophical Writings of Descartes, 3 vols., trans. J. Cottingham, R. Stoothoff, D. Murdoch and A. Kenny, Cambridge University Press.

    Google Scholar 

  14. Dym, C.L. and Shames, I.H. (1973) Solid Mechanics, A Variational Approach, McGraw-Hill Book Co.

    Google Scholar 

  15. Dumas, M. (Ed.) (1962) Histoire Generale des Techniques, Vols. I–IV, Paris.

    Google Scholar 

  16. Euler, L. (1736–1770) Mechanica sive Motus Scienta Analytice Exposita, 1736, Sur la force des colonnes, Berlin-Brandenburgischen Akademie der Wissenschaften – Memoires de l’Academie de Berlin, Tom. XIII, 1759, p. 252, De motu vibratorio fili flexilis, corpusculis quotcunque onusti, Novi Comentarii Academiae Scientarum Imperialis Petropolotanae, Vol. IX, 1764, Genuina Principia Doctrinae de Statu aequilibri et motu corporum tam perfecte flexibilium quam elasticorum, Novi Comentarii Academiae Scientarum Imperialis Petropolotanae, Vol. XV, 1770.

    Google Scholar 

  17. Fox, C. (1950) An Introduction to the Calculus of Variations, Oxford University Press.

    Google Scholar 

  18. Galileo Galilei (1638) Discorsi e Dimostrazioni mathematische, Leiden.

    Google Scholar 

  19. Galileo Galilei (1974) Two New Sciences, trans. Stillman Drake, University. of Wisconsin Press,

    Google Scholar 

  20. Grant, E.: The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  21. Hall, A.R.: The Revolution in Science, 3rd edn., Longman, pp. 1500–1750 (1983)

    Google Scholar 

  22. Hamilton, W.R.: On a General Method in Dynamics. Philosophical Transaction of the Royal Society, Part I, 247–308 (1834); Part II, pp. 95–144 (1835)

    Google Scholar 

  23. Han, S.M., Benaroya, H. and Wei, T. (1999) Dynamics of Transversely Vibrating Beams Using Four Engineering Theories, Journal of Sound and Vibration, 225(5), p. 935.

    Google Scholar 

  24. Kirchoff. G. (1876) Vorlesungen über mathematisch Physik: Mechanik, Leipzig.

    Google Scholar 

  25. Kranzberg, M. and Pursell, C.W. Jr. (1967) Technology in Western Civilization, Vols. I–II, New York.

    Google Scholar 

  26. Kuhn, T.: The Copernican Revolution. Harvard University Press, Cambridge (1957)

    Google Scholar 

  27. Lagrange, J.L.: Mécanique Analytique, vol. 2, Gauthier-Villars et fils, Paris (1788)

    Google Scholar 

  28. Lanczos, C.: The Variational Principle of Mechanics. University of Toronto (1949)

    Google Scholar 

  29. Langhaar, H.L.: Energy Methods in Applied Mechanics. John Wiley & Sons, Chichester (1962)

    Google Scholar 

  30. Leibniz, G.: Demonstrationes novae de Resistentia solidorum. Acta Eruditorum Lipsiae, 319 (1684)

    Google Scholar 

  31. Lindberg, D.C.: The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450. University. of Chicago Press, Chicago (1992)

    Google Scholar 

  32. Lindberg, D.C., Westman, R.S. (eds.): Reappraisals of the Scientific Revolution. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  33. Love, A.E.H.: Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  34. Mahanty, S.: Marie-Sophie Germain, The Remarkable Woman Mathematicians of France. Dream 2047 8(10), 38 (2006)

    Google Scholar 

  35. Maier, A.: On the Threshold of Exact Science: Selected Writings on Late Medieval Natural Philosophy. University of Pennsylvania Press (1982)

    Google Scholar 

  36. Mariotte, E.: Traits du mouvement des eaux, Paris (1686)

    Google Scholar 

  37. McGuire, J.E., Rattansi, P.M.: Newton and the ‘Pipes of Pan’. Notes and Records of the Royal Society of London 21(2) (1966)

    Google Scholar 

  38. Lois, N.: De l’équilibre et du mouvement des corps solides élastiques, Paper Read to the Académie des Sciences, May 14 (1821)

    Google Scholar 

  39. Neugebauer, O.: On the Planetary Theory of Copernicus. Vistas in Astronomy 10 (1968)

    Google Scholar 

  40. Newton, I.: Principia Mathematica. Earl Gregg Swem Library. College of William & Mary (1786)

    Google Scholar 

  41. Prescott, J.: Applied Elasticity. Dover, New York (1946)

    Google Scholar 

  42. Rao, J.S.: Advanced Theory of Vibration. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  43. Rao, J.S.: Dynamics of Plates. Marcel Dekker, New York (1998)

    Google Scholar 

  44. Rayleigh, J.W.S.: Theory of Sound, Macmillan, London. Dover Publication, New York (1945)

    MATH  Google Scholar 

  45. Reti, L. (ed.): The Unknown Leonardo. McGraw-Hill Co., New York (1974)

    Google Scholar 

  46. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die Reine und Angewandte Mathematik 135, 1 (1909)

    Article  Google Scholar 

  47. Ritz, W.: Gesammelte Werke, Gauthier-Villars (1911)

    Google Scholar 

  48. Shapin, S.: The Scientific Revolution. University of Chicago Press, Chicago (1996)

    Google Scholar 

  49. Singer, C., et al. (eds.): A History of Technology, New York, vol. I–V (1954)

    Google Scholar 

  50. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill Book Co., New York (1956)

    MATH  Google Scholar 

  51. Stokes, G.G.: On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of ElSstic solids. Cambridge Philosophical Society Transactions 8, 287 (1849)

    Google Scholar 

  52. Timoshenko, S.P.: On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Philosophical Magazine 41, 744 (1921)

    Google Scholar 

  53. Timoshenko, S.P.: On the Transverse Vibrations of Bars of Uniform Cross-Section. Philosophical Magazine, 125 (1922)

    Google Scholar 

  54. Timoshenko, S.P.: History of Strength of Materials. McGraw-Hill Book Co., New York (1955)

    Google Scholar 

  55. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Co., New York (1951)

    MATH  Google Scholar 

  56. Todhunter, I.: A History of the Theory of Elasticity and of the Strength of Materials: From Galilei to Lord Kelvin. Dover, New York (1960)

    MATH  Google Scholar 

  57. Ullmann, D.: Life and Work of E.F.F. Chladini. The European Physical Journal – Special Topics 145(1), 25 (2007)

    Article  MathSciNet  Google Scholar 

  58. Varignon, P. (1702) De la Resistance des Solides en general pour toit ce qu’on peut faire d’hypothises touchant la force ou la tenacite des Fibres des Corps a rompre; Et en particulier pour les hypotheses de Galilee & de M. Mariotte, Memoires de l’Acadimie, Paris, p. 66.

    Google Scholar 

  59. Washizu, K.: Variational Principles in Continuum Mechanics, Report 62-2, University of Washington, College of Engineering (1962)

    Google Scholar 

  60. Washizu, K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  61. Weinstock, R.: Calculus of Variations with Applications to Physics and Engineering. McGraw-Hill Book Co., New York (1952)

    MATH  Google Scholar 

  62. Westfall, R.S.: The Construction of Modern Science. John Wiley and Sons, Chichester (1971)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Rao, J.S. (2011). Renaissance and Scientific Revolution. In: History of Rotating Machinery Dynamics. History of Mechanism and Machine Science, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1165-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1165-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1164-8

  • Online ISBN: 978-94-007-1165-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics