Advertisement

Lifing

  • J. S. Rao
Part of the History of Mechanism and Machine Science book series (HMMS, volume 20)

Abstract

Turbine bladed disks continue to fail because of fatigue caused by resonant stresses; one of the major failures in the 1990s was reported in a nuclear machine in Narora, India. Bearing failures caused machine trip and rubbing caused blade fatigue (see Figure 18.1).

Albert Wilhelm (1838) is recognized as the first person to record observations of metal fatigue. While working in the Mining and Forestry Office in Clausthal, Germany, in 1829, he observed, studied and reported the failure of iron mine-hoist chains arising from repeated small loadings, the first recorded account of metal fatigue, see [31].

Keywords

Turbine Blade Linear Elastic Fracture Mechanics Fatigue Failure Critical Speed Centrifugal Compressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, W.A.J.: Über Treibseile am Harz, Archive für Mineralogie Geognosie Bergbau und Hüttenkunde, vol. 10, p. 215 (1838)Google Scholar
  2. 2.
    Barsom, J.M., Rolfe, S.T.: Fracture and Fatigue Control in Structures. Prentice Hall, Englewood Cliffs (1987)Google Scholar
  3. 3.
    Basquin, O.H.: The Experimental Law of Endurance Tests. In: Proc. ASTM, vol. 10, p. 625 (1910)Google Scholar
  4. 4.
    Braithwaite, F.: On the Fatigue and Consequent Fracture of Metals. In: Institution of Civil Engineers, Minutes of Proceedings, p. 463 (1854)Google Scholar
  5. 5.
    Coffin Jr., L.F.: A Study of the Effects of Cyclic Thermal Stresses on a Ductile Material. Trans. ASME 76, 931 (1954)Google Scholar
  6. 6.
    Fairbairn, W.: Experiments to Determine the Effect of Impact, Vvibratory Action, and Long Continued Changes of Load on Wrought Iron Girders, vol. 154, p. 311. Philosophical Transactions of the Royal Society, London (1864)Google Scholar
  7. 7.
    Fleeting, R., Coats, R.: Blade Failures in the HP Turbines of RMS Queen Elizabeth 2 and Their Rectification. Trans. Instn. of Marine Engrs. 82, 49 (1970)Google Scholar
  8. 8.
    Frank, W.: Schaden Speigel, vol. 25, p. 20 (1982)Google Scholar
  9. 9.
    Glynn, J.: On the Causes of Fracture of the Axles of Railway Carriages. In: Institution of Civil Engineers, Minutes of Proceedings, p. 202 (1844)Google Scholar
  10. 10.
    Griffith, A.A.: The Phenomenon of Rupture and Flaw in Solids. Trans. Roy Soc. A-221 (1920)Google Scholar
  11. 11.
    Poncelet, J.-V.: Introduction à la mécanique industrielle, École d’Application, Metz, France (1829)Google Scholar
  12. 12.
    Ludwik, P.: Elemente der Technologischen Mechanik. Springer, Heidelberg (1909)zbMATHGoogle Scholar
  13. 13.
    Manson, S.S.: Behavior of Materials under Constant Thermal Stress. In: Proceedings Heat Transfer Symposium, University of Michigan, Engng. Research Institute, p. 9 (1953)Google Scholar
  14. 14.
    Paris, P.C., Erdogan, F.: A Critical Analysis of Crack Propagation Laws. Journal Basic Engng., Trans ASME 85, 528 (1963)Google Scholar
  15. 15.
    Pederson, O.: Early Physics and Astronomy: A Historical Introduction, 2nd edn. Cambridge University Press, Cambridge (1993)Google Scholar
  16. 16.
    Rankine, W.J.M.: On the Causes of the Unexpected Breakage of the Journals of Railway Axles, and on the Means of Preventing such Accidents by Observing the Law of Ccontinuity in Their Construction. In: Institution of Civil Engineers, Minutes of Proceedings, p. 105 (1842)Google Scholar
  17. 17.
    Rao, J.S.: Fracture Mechanics Analysis of a Steam Turbine Blade Failure, In. In: Proceedings 1995 Design Engng Technical Conferences, ASME DE, vol. 84-2, p. 117 (1995)Google Scholar
  18. 18.
    Rao, J.S.: Application of Fracture Mechanics in the Failure Analysis of a Last Stage Steam Turbine Blade. Mechanism and Machine Theory 33(5), 599 (1998)CrossRefGoogle Scholar
  19. 19.
    Rao, J.S.: Turbine Blade Life Estimation, Alpha Science (2001)Google Scholar
  20. 20.
    Rao, J.S.: Fracture Mechanics in TurboManager Quickens Blade Failure Investigations. International Review of Aerospace Engineering (I.RE.AS.E) 2(6), 329 (2009)Google Scholar
  21. 21.
    Rao, J.S., Nimbekar, P.K., Misra, R., Singh, A.K.: Application of Local Stress-Strain Approach to Predict Fracture Initiation of a Francis Turbine Runner Blade. In: Proceedings ISROMAC-7, Hawaii, vol. B, p. 674 (1998)Google Scholar
  22. 22.
    Rao, J.S., Pathak, A., Chawla, A.: Blade Life – A Comparison by Cumulative Damage Theories. Journal of Engineering for Gas Turbines and Power 123(4), 886 (2001)CrossRefGoogle Scholar
  23. 23.
    Rao, J.S., Peraiah, K.C.: Gearbox Failure of a Turbogenerator Set. In: Proceedings of ASME Turbo Expo. (2001) 2001-GT-0235.Google Scholar
  24. 24.
    Rao, J.S., Peraiah, K.Ch. and Uday, K.S. (2009) Estimation of Dynamic Stresses in Last Stage Steam Turbine Blades under Reverse Flow Conditions, Advances in Vibration Engineering, Journal of Vibration Institute of India, vol. 8, no. 1, p. 71.Google Scholar
  25. 25.
    Rao, J.S., Ramakrishnan, C.V., Gupta, K. and Singh, A. (2000) Elastic Plastic Fracture Mechanics of a LP Stage Steam Turbine Blade Root, in Proceedings 5th ASME Annual Engineering Systems Design & Analysis, Montreux.Google Scholar
  26. 26.
    Rao, J.S., Rejin, R., Suresh, S. and Narayan, R. (2009) A Procedure to Predict Influence of Acceleration and Damping of Blades Passing Through Critical Speeds on Fatigue Life, in Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, GT2009-59433.Google Scholar
  27. 27.
    Rao, J.S. and Rzadkowski, R. (2002) Life Estimation of Tuned and Mistuned Turbine Blades Using Linear and Nonlinear Cumulative Damage Theories, Advances in Vibration Engineering, Journal of Vibration Institute of India, vol. 1, no. 4, p. 322.Google Scholar
  28. 28.
    Rao, J.S., Singh, A.K. and Sharma, K.V.B., (1998) Blade and Rotor Dynamics in an Atomic Power Plant Accident, in Proceedings Ninth World Congress Theory of Machine and Mechanisms, Milan, Vol. II, p.1334.Google Scholar
  29. 29.
    Rao, J.S. and Vyas, N.S. (1996) Determination of Blade Stresses under Constant Speed and Transient Conditions with Nonlinear Damping, Journal of Engng for Gas Turbines and Power, Trans ASME, vol. 118, no. 2, p. 424.Google Scholar
  30. 30.
    Robertson, M.D. and Walton, D. (1990) Design Analysis of Steam Turbine Blade Roots under Centrifugal Loading, Journal of Strain Analysis for Engineering Design, vol. 25, no. 3, pp. 185–195.Google Scholar
  31. 31.
    Stephens, R.I. (2001) Metal Fatigue in Engineering, John Wiley & Sons, Inc.Google Scholar
  32. 32.
    St. Peter, J. (1999) The History of Aircraft Gas Turbine Engine Development in the United States ... A Tradition of Excellence, ASME Publication.Google Scholar
  33. 33.
    Tóth, L. and Yarema, S.Y. (2006) Formation of the Science of Fatigue of Metals. Part 1. 1825–1870, Material Science, vol. 42, no. 5, p. 673.Google Scholar
  34. 34.
    Wöhler, A. (1858–1870) Über die Festigkeitsversuche mit Eisen and Stahl, Zeitschrift für Bauwesen, vol. 8 (1858), p. 641; vol. 10 (1860), p. 583; vol. 13 (1863), p. 233; vol. 16 (1866), p. 67; vol. 20 (1870), p. 73.Google Scholar
  35. 35.
    Wöhler, A. (1867) Experiments on the Strength of Metals, Engineering, vol. 4, p. 160.Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • J. S. Rao

    There are no affiliations available

    Personalised recommendations