Advertisement

Autophagy

  • María Luisa EscobarEmail author
  • Gerardo H. Vázquez-Nin
  • Olga M. Echeverría
Chapter

Abstract

Autophagy is a physiological process conserved by evolution for the recycling of cell constituents, as organelles or fragments of cytoplasm. Autophagy does not cause loss of cell chemical components as the cell reutilizes them. The lysosomes are acidic vesicles delimited by a single membrane formed in the Golgi apparatus. They contain acid hydrolases for degradation of proteins; lipids, nucleic acids and glucids, and they fuse with diverse types of phagocytic vesicles. Autophagosomes contain undegraded cytoplasmic ground substance and recognizable organelles. The transformation of an autophagosome in an autolysosome occurs by the acquisition of lysosomal membrane proteins and the delivery of acid hydrolases. The autophagy mechanism is considered as a protective system; organisms in starving conditions, autophagy is a procedure to reduce metabolic demand by the cell and thus avoid death. On the other hand, autophagic cell death is a form of programmed cell death morphological and metabolic different from apoptosis. Autophagic cell death is accompanied by cytoplasmic vacuolization and activation of lysosomal enzymes. Due to the absence of a rupture of cell membrane and leak of cytoplasmic content, this cell death program is characterized by the lack of a tissue inflammatory response.

Keywords

Lysosomal Membrane Autophagic Vacuole Autophagic Cell Death Autophagosome Formation Acid Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

TOR

Target of rapamycin

TSC

Tuberous sclerosis complex

TOR

Target of rapamycin

TSC

Tuberous sclerosis complex

RER

Endoplasmic reticulum

Atg

AuTophaGy-related

PI3K

Phosphatidylinositol 3-OH kinase

Vps34

Vacuolar protein sorting 34

PE

Phosphatidylethanolamine

LC3

Light chain 3 microtubule-associated protein 1

MPT

Mitochondrial permeability transition

AMPK

AMP-activated protein kinase

PAS

Preautophagosomal structure (or phagophore assembly site)

PtdIns4P

Phosphatidylinositol-4phosphate

PtdIns(4,5)P2

Phosphatidylinositol-4, 5-bisphosphate

PDK1

Phosphoinositide-dependent kinase-1

References

  1. Afford S, Randhawa S (2000) Apoptosis. Mol Pathol 53:55–63PubMedCrossRefGoogle Scholar
  2. Aki T, Yamaguchi K, Fujimiya T, Mizukami Y (2003) Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene 22(52):8529–8535PubMedCrossRefGoogle Scholar
  3. Al-Awqati Q (1986) Proton-translocating ATPases. Annu Rev Cell Biol 2:179–199PubMedCrossRefGoogle Scholar
  4. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y. 1997. Histol Histopathol. 12:25-31.Google Scholar
  5. Aplin A, Jasianowski T, Tuttle DL, Lenk S, Dunn WA (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 153:458–466CrossRefGoogle Scholar
  6. Arico S, Petiot A, Bauvy C et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246Google Scholar
  7. Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263PubMedCrossRefGoogle Scholar
  8. Baehrecke EH (2000) Autophagic programmed cell death in Drosophila. Cell Death Differ 10(9):940–945Google Scholar
  9. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510PubMedCrossRefGoogle Scholar
  10. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892PubMedCrossRefGoogle Scholar
  11. Bergamini E, Cavallini G, Donati A, Gori Z (2003) The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 57:203–208PubMedCrossRefGoogle Scholar
  12. Blommaart EF, Luiken JJ, Meijer AJ (1997) Autophagic proteolysis: control and specificity. Histochem J 29(5):365–385Google Scholar
  13. Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040PubMedCrossRefGoogle Scholar
  14. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664Google Scholar
  15. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(70):1595–1607PubMedCrossRefGoogle Scholar
  16. Bursch W, Hochegger K, Török L, Marian B, Ellinger A, Hermann RS (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Scie 113:1189–1198Google Scholar
  17. Chen JW, Pan W, D’Souza MP, August JT (1985) Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 239:574–586PubMedCrossRefGoogle Scholar
  18. Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722PubMedCrossRefGoogle Scholar
  19. Clarke PGH (1990) Developmental cell death: morphological diversityand multiple mechanisms. Anat Embryol 181:195–213PubMedCrossRefGoogle Scholar
  20. Cuervo AM (2004) Autophagy: Many pathways to the same end. Mol Cell Biochem 263:55–72PubMedCrossRefGoogle Scholar
  21. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503PubMedCrossRefGoogle Scholar
  22. Cuervo AM, Dice JF (2000) When lysosomes get old. Exper Gerontol 35:119–131CrossRefGoogle Scholar
  23. Darsow T, Rieder SE, Emr SD (1997) A multispecificitysyntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529PubMedCrossRefGoogle Scholar
  24. Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trens Biochem Sci 15:305–309CrossRefGoogle Scholar
  25. Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110(6):1923–33PubMedCrossRefGoogle Scholar
  26. Dunn WA Jr (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4:139–143PubMedCrossRefGoogle Scholar
  27. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1–10PubMedCrossRefGoogle Scholar
  28. Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145PubMedCrossRefGoogle Scholar
  29. Ferraro E, Cecconi F (2007) Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophysics 462:210–219CrossRefGoogle Scholar
  30. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141PubMedCrossRefGoogle Scholar
  31. Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266:21327–21330PubMedGoogle Scholar
  32. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826PubMedCrossRefGoogle Scholar
  33. González-Noriega A. 2003. Lisosomas. En: Biología Celular y Mol. Eds. Jiménez L. F. y H. Merchant. Ed. Pearson Educación. México.Google Scholar
  34. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13:358–363PubMedCrossRefGoogle Scholar
  35. Gozuacik D, Kimchi A. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906.Google Scholar
  36. Granger BL, Green SA, Gabel CA, Howe CL, Mellman I, Helenius A (1990) Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 265:12036–12043PubMedGoogle Scholar
  37. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  38. He H, Dang Y, Dai F, Guo Z, Wu J, She X et al (2003) Post-translational modifications of the three members of the human MAP1-LC3 family and detection of a novel type of modification for MAP1-LC3B. J Biol Chem 278:29278–29287PubMedCrossRefGoogle Scholar
  39. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  40. Huang WP, Scott SV, Kim J, Klionsky DJ (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845–5851PubMedCrossRefGoogle Scholar
  41. Hunziker W, Simmen T, Honing S (1996) Trafficking of lysosomal membrane proteins in polarized kidney cells. Néphrologie 17:347–350PubMedGoogle Scholar
  42. Hutchins MU, Veenhuis M, Klionsky DJ (1999) Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112:4079–4087PubMedGoogle Scholar
  43. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Ohsumi NT, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492PubMedCrossRefGoogle Scholar
  44. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468PubMedCrossRefGoogle Scholar
  45. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRefGoogle Scholar
  46. Jäger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848PubMedCrossRefGoogle Scholar
  47. Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3:28–31PubMedGoogle Scholar
  48. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes alter processing. EMBO J 19:5720–5728PubMedCrossRefGoogle Scholar
  49. Kabeya Y, Mizushima N, Yamamomo A, Oshitani-Okamoto S, Ohsumi Y, Yoshimoi T (2004) LC3 GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812PubMedCrossRefGoogle Scholar
  50. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–13PubMedCrossRefGoogle Scholar
  51. Katso R, Okkenhaug K, Ahmadi K et al (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675 Google Scholar
  52. Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, Difiglia M (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278PubMedGoogle Scholar
  53. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2:330–335PubMedCrossRefGoogle Scholar
  54. Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10(5):1337–1351Google Scholar
  55. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/aut7p in yeast. J Cell Biol 147:435–446PubMedCrossRefGoogle Scholar
  56. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276PubMedCrossRefGoogle Scholar
  57. Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279:39068–39074PubMedCrossRefGoogle Scholar
  58. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCrossRefGoogle Scholar
  59. Kondo Y, Kanzawa T (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734PubMedCrossRefGoogle Scholar
  60. Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Curr Biol 13:350–357PubMedCrossRefGoogle Scholar
  61. Lemasters JJ, Qian T, Elmore SP et al (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofact 8(3-4):283–285Google Scholar
  62. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRefGoogle Scholar
  63. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  64. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688PubMedCrossRefGoogle Scholar
  65. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596PubMedGoogle Scholar
  66. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676PubMedCrossRefGoogle Scholar
  67. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419PubMedCrossRefGoogle Scholar
  68. Luiken JJFP, Aerts JMFG, Meijer AJ (1996) The role of intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. Eur J Biochem 235:564–573PubMedCrossRefGoogle Scholar
  69. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448PubMedCrossRefGoogle Scholar
  70. Marsh M, Schmid S, Kern H, Harms E, Male P, Mellmann I, Helenius A (1987) Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J Cell Biol 104:875–886PubMedCrossRefGoogle Scholar
  71. Martin DH, Bachrecke AH. 2004. Caspase function in autophagic cell death in Drosophila Development. 131:275-284.Google Scholar
  72. Marygold SJ, Leevers SJ (2002) Growth signaling: TSC takes it place. Curr Biol 12:R785–R787PubMedCrossRefGoogle Scholar
  73. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462PubMedCrossRefGoogle Scholar
  74. Mellmann I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700CrossRefGoogle Scholar
  75. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  76. Mizushima N, Noda T, Yoshimori T et al (1998a) A protein conjugation system essential for autophagy. Nat 395–398Google Scholar
  77. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998b) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273:33889–33892PubMedCrossRefGoogle Scholar
  78. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg-5 deficient mouse embryonic stem cells. J Cell Biol 152:657–667PubMedCrossRefGoogle Scholar
  79. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688PubMedCrossRefGoogle Scholar
  80. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRefGoogle Scholar
  81. Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 9–10:1161–1172CrossRefGoogle Scholar
  82. Noda T, Suzuki K, Ohsumi Y (2002) Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12:231–235PubMedCrossRefGoogle Scholar
  83. Novikoff AB (1961) Lysosomes and related particles. In: Brachet J, Mirsky AE (eds) The Cell, vol II, Cells and their component parts. Academic Press, New York, pp 423–488Google Scholar
  84. Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128PubMedGoogle Scholar
  85. Ohsumi Y (2001) Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cel Biol 2:211–216CrossRefGoogle Scholar
  86. Onodera J, Ohsumi Y (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 279:16071–16076PubMedCrossRefGoogle Scholar
  87. Peters C, von Figura K (1994) Biogenesis of lysosomal membranes. FEBS Lett 346:108–114PubMedCrossRefGoogle Scholar
  88. Petiot A, Ogier-Denis E, Blommaart EF et al (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998Google Scholar
  89. Rieder SE, Emr SD (1997) A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 8:2307–2327PubMedGoogle Scholar
  90. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312PubMedCrossRefGoogle Scholar
  91. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192PubMedCrossRefGoogle Scholar
  92. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262PubMedCrossRefGoogle Scholar
  93. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266CrossRefGoogle Scholar
  94. Stefanis L, Larsen K, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type a-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560PubMedGoogle Scholar
  95. Susin SA, Zamzami N, Kroemer G (1998) Mitochondira and regulators of apoptosis: Doubt no more. Biochim Biophys Acta 1366:151–165PubMedCrossRefGoogle Scholar
  96. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981PubMedCrossRefGoogle Scholar
  97. Takeda M, Shirato I, Kobayashi M, Endou H (1999) Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells. Nephron 81:234–238PubMedCrossRefGoogle Scholar
  98. Talloczy Z, Jiang W, Virgin HW, Leib DA, Sheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation -and virus- induced autophagy by the elF2α kinase signalling pathway. Proc Natl Acad Sci USA 99:190–195PubMedCrossRefGoogle Scholar
  99. Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406(6798):902–906PubMedCrossRefGoogle Scholar
  100. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10:1367–1379PubMedGoogle Scholar
  101. Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, Kominami E (1999) Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 274(21):15222–15229PubMedCrossRefGoogle Scholar
  102. Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 3:561–576Google Scholar
  103. Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76PubMedGoogle Scholar
  104. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  105. Xu ZX, Liang J, Haridas V, Gaikwad A, Connolly FP, Mills GB, Gutterman JU (2007) A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ 14:1948–1957PubMedCrossRefGoogle Scholar
  106. Xue L, Fletcher GC, Tolkovsky M (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14:180–198PubMedCrossRefGoogle Scholar
  107. Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26(12):1421–1434PubMedCrossRefGoogle Scholar
  108. Yu L, Lenardo MJ, Baehrecke EH (2004a) Autophagy and caspases. A new cell death program. Cell Cycle 3(9):1124–1126PubMedCrossRefGoogle Scholar
  109. Yu L, Alva A, Su H, Dutt P, von Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004b) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502PubMedCrossRefGoogle Scholar
  110. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • María Luisa Escobar
    • 1
    Email author
  • Gerardo H. Vázquez-Nin
    • 1
  • Olga M. Echeverría
    • 1
  1. 1.Laboratory of Electron Microscopy, Department of Cell Biology, Faculty of SciencesNational University of Mexico (UNAM)MexicoUSA

Personalised recommendations