Skip to main content

Autophagy

  • Chapter
  • First Online:
  • 676 Accesses

Abstract

Autophagy is a physiological process conserved by evolution for the recycling of cell constituents, as organelles or fragments of cytoplasm. Autophagy does not cause loss of cell chemical components as the cell reutilizes them. The lysosomes are acidic vesicles delimited by a single membrane formed in the Golgi apparatus. They contain acid hydrolases for degradation of proteins; lipids, nucleic acids and glucids, and they fuse with diverse types of phagocytic vesicles. Autophagosomes contain undegraded cytoplasmic ground substance and recognizable organelles. The transformation of an autophagosome in an autolysosome occurs by the acquisition of lysosomal membrane proteins and the delivery of acid hydrolases. The autophagy mechanism is considered as a protective system; organisms in starving conditions, autophagy is a procedure to reduce metabolic demand by the cell and thus avoid death. On the other hand, autophagic cell death is a form of programmed cell death morphological and metabolic different from apoptosis. Autophagic cell death is accompanied by cytoplasmic vacuolization and activation of lysosomal enzymes. Due to the absence of a rupture of cell membrane and leak of cytoplasmic content, this cell death program is characterized by the lack of a tissue inflammatory response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

TOR:

Target of rapamycin

TSC:

Tuberous sclerosis complex

TOR:

Target of rapamycin

TSC:

Tuberous sclerosis complex

RER:

Endoplasmic reticulum

Atg :

AuTophaGy-related

PI3K:

Phosphatidylinositol 3-OH kinase

Vps34:

Vacuolar protein sorting 34

PE:

Phosphatidylethanolamine

LC3:

Light chain 3 microtubule-associated protein 1

MPT:

Mitochondrial permeability transition

AMPK:

AMP-activated protein kinase

PAS:

Preautophagosomal structure (or phagophore assembly site)

PtdIns4P:

Phosphatidylinositol-4phosphate

PtdIns(4,5)P2:

Phosphatidylinositol-4, 5-bisphosphate

PDK1:

Phosphoinositide-dependent kinase-1

References

  • Afford S, Randhawa S (2000) Apoptosis. Mol Pathol 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Aki T, Yamaguchi K, Fujimiya T, Mizukami Y (2003) Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene 22(52):8529–8535

    Article  PubMed  CAS  Google Scholar 

  • Al-Awqati Q (1986) Proton-translocating ATPases. Annu Rev Cell Biol 2:179–199

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y. 1997. Histol Histopathol. 12:25-31.

    Google Scholar 

  • Aplin A, Jasianowski T, Tuttle DL, Lenk S, Dunn WA (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 153:458–466

    Article  Google Scholar 

  • Arico S, Petiot A, Bauvy C et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276(38):35243–35246

    Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke EH (2000) Autophagic programmed cell death in Drosophila. Cell Death Differ 10(9):940–945

    Google Scholar 

  • Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    Article  PubMed  CAS  Google Scholar 

  • Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892

    Article  PubMed  CAS  Google Scholar 

  • Bergamini E, Cavallini G, Donati A, Gori Z (2003) The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 57:203–208

    Article  PubMed  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Meijer AJ (1997) Autophagic proteolysis: control and specificity. Histochem J 29(5):365–385

    Google Scholar 

  • Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  PubMed  CAS  Google Scholar 

  • Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664

    Google Scholar 

  • Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(70):1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Hochegger K, Török L, Marian B, Ellinger A, Hermann RS (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Scie 113:1189–1198

    CAS  Google Scholar 

  • Chen JW, Pan W, D’Souza MP, August JT (1985) Lysosome-associated membrane proteins: characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 239:574–586

    Article  PubMed  CAS  Google Scholar 

  • Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722

    Article  PubMed  CAS  Google Scholar 

  • Clarke PGH (1990) Developmental cell death: morphological diversityand multiple mechanisms. Anat Embryol 181:195–213

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM (2004) Autophagy: Many pathways to the same end. Mol Cell Biochem 263:55–72

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Dice JF (2000) When lysosomes get old. Exper Gerontol 35:119–131

    Article  CAS  Google Scholar 

  • Darsow T, Rieder SE, Emr SD (1997) A multispecificitysyntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138:517–529

    Article  PubMed  CAS  Google Scholar 

  • Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trens Biochem Sci 15:305–309

    Article  CAS  Google Scholar 

  • Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110(6):1923–33

    Article  PubMed  Google Scholar 

  • Dunn WA Jr (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4:139–143

    Article  PubMed  CAS  Google Scholar 

  • Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1–10

    Article  PubMed  CAS  Google Scholar 

  • Eskelinen EL, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145

    Article  PubMed  CAS  Google Scholar 

  • Ferraro E, Cecconi F (2007) Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophysics 462:210–219

    Article  CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266:21327–21330

    PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • González-Noriega A. 2003. Lisosomas. En: Biología Celular y Mol. Eds. Jiménez L. F. y H. Merchant. Ed. Pearson Educación. México.

    Google Scholar 

  • Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13:358–363

    Article  PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906.

    Google Scholar 

  • Granger BL, Green SA, Gabel CA, Howe CL, Mellman I, Helenius A (1990) Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 265:12036–12043

    PubMed  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  PubMed  CAS  Google Scholar 

  • He H, Dang Y, Dai F, Guo Z, Wu J, She X et al (2003) Post-translational modifications of the three members of the human MAP1-LC3 family and detection of a novel type of modification for MAP1-LC3B. J Biol Chem 278:29278–29287

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Huang WP, Scott SV, Kim J, Klionsky DJ (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275:5845–5851

    Article  PubMed  CAS  Google Scholar 

  • Hunziker W, Simmen T, Honing S (1996) Trafficking of lysosomal membrane proteins in polarized kidney cells. Néphrologie 17:347–350

    PubMed  CAS  Google Scholar 

  • Hutchins MU, Veenhuis M, Klionsky DJ (1999) Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112:4079–4087

    PubMed  CAS  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Ohsumi NT, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  • Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468

    Article  PubMed  CAS  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  • Jäger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848

    Article  PubMed  Google Scholar 

  • Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3:28–31

    PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes alter processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamomo A, Oshitani-Okamoto S, Ohsumi Y, Yoshimoi T (2004) LC3 GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–13

    Article  PubMed  CAS  Google Scholar 

  • Katso R, Okkenhaug K, Ahmadi K et al (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675

    Google Scholar 

  • Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, Difiglia M (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278

    PubMed  CAS  Google Scholar 

  • Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2:330–335

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10(5):1337–1351

    Google Scholar 

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/aut7p in yeast. J Cell Biol 147:435–446

    Article  PubMed  CAS  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  PubMed  CAS  Google Scholar 

  • Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279:39068–39074

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Kanzawa T (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Curr Biol 13:350–357

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, Qian T, Elmore SP et al (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofact 8(3-4):283–285

    Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Luiken JJFP, Aerts JMFG, Meijer AJ (1996) The role of intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. Eur J Biochem 235:564–573

    Article  PubMed  CAS  Google Scholar 

  • Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, Schmid S, Kern H, Harms E, Male P, Mellmann I, Helenius A (1987) Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J Cell Biol 104:875–886

    Article  PubMed  CAS  Google Scholar 

  • Martin DH, Bachrecke AH. 2004. Caspase function in autophagic cell death in Drosophila Development. 131:275-284.

    Google Scholar 

  • Marygold SJ, Leevers SJ (2002) Growth signaling: TSC takes it place. Curr Biol 12:R785–R787

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    Article  PubMed  CAS  Google Scholar 

  • Mellmann I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T et al (1998a) A protein conjugation system essential for autophagy. Nat 395–398

    Google Scholar 

  • Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998b) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273:33889–33892

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg-5 deficient mouse embryonic stem cells. J Cell Biol 152:657–667

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  PubMed  CAS  Google Scholar 

  • Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Cataldo AM, Mathews PM (2000) The endosomal-lysosomal system of neurons in Alzheimer’s disease pathogenesis: a review. Neurochem Res 9–10:1161–1172

    Article  Google Scholar 

  • Noda T, Suzuki K, Ohsumi Y (2002) Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12:231–235

    Article  PubMed  CAS  Google Scholar 

  • Novikoff AB (1961) Lysosomes and related particles. In: Brachet J, Mirsky AE (eds) The Cell, vol II, Cells and their component parts. Academic Press, New York, pp 423–488

    Google Scholar 

  • Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128

    PubMed  CAS  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cel Biol 2:211–216

    Article  CAS  Google Scholar 

  • Onodera J, Ohsumi Y (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 279:16071–16076

    Article  PubMed  CAS  Google Scholar 

  • Peters C, von Figura K (1994) Biogenesis of lysosomal membranes. FEBS Lett 346:108–114

    Article  PubMed  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF et al (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    Google Scholar 

  • Rieder SE, Emr SD (1997) A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 8:2307–2327

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    Article  PubMed  CAS  Google Scholar 

  • Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Article  Google Scholar 

  • Stefanis L, Larsen K, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type a-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Kroemer G (1998) Mitochondira and regulators of apoptosis: Doubt no more. Biochim Biophys Acta 1366:151–165

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Shirato I, Kobayashi M, Endou H (1999) Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells. Nephron 81:234–238

    Article  PubMed  CAS  Google Scholar 

  • Talloczy Z, Jiang W, Virgin HW, Leib DA, Sheuner D, Kaufman RJ, Eskelinen EL, Levine B (2002) Regulation of starvation -and virus- induced autophagy by the elF2α kinase signalling pathway. Proc Natl Acad Sci USA 99:190–195

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, Figura K, Saftig P (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406(6798):902–906

    Article  PubMed  CAS  Google Scholar 

  • Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10:1367–1379

    PubMed  CAS  Google Scholar 

  • Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, Kominami E (1999) Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 274(21):15222–15229

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 3:561–576

    Google Scholar 

  • Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76

    PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  • Xu ZX, Liang J, Haridas V, Gaikwad A, Connolly FP, Mills GB, Gutterman JU (2007) A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ 14:1948–1957

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Fletcher GC, Tolkovsky M (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14:180–198

    Article  PubMed  CAS  Google Scholar 

  • Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26(12):1421–1434

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Lenardo MJ, Baehrecke EH (2004a) Autophagy and caspases. A new cell death program. Cell Cycle 3(9):1124–1126

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, von Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004b) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Escobar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Escobar, M.L., Vázquez-Nin, G.H., Echeverría, O.M. (2011). Autophagy. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_5

Download citation

Publish with us

Policies and ethics