Advertisement

Trends in Design Methods for Complex Heterogeneous Systems

  • C. Piguet
  • J.-L. Nagel
  • V. Peiris
  • S. Gyger
  • D. Séverac
  • M. Morgan
  • J.-M. Masgonty

Abstract

The design of heterogeneous Systems-on-Chips (SoC) in very deep submicron technologies has become a very complex task that has to bridge very high level system descriptions with low-level considerations due to technology defaults and variations, and increasing system and circuit complexity. This paper describes the major low-level issues, such as dynamic and static power consumption, temperature, technology variations, interconnect, Design for Manufacturing (DFM), reliability and yield, and their impact on high-level design, such as the design of multi-V dd , fault-tolerant, redundant or adaptive chip architectures. Some multi-processor based SoC (MPSoC) cases are also presented in three domains in which heterogeneity is large: wireless sensor networks, vision sensors and mobile TV. These examples also highlight the heterogeneous nature and the increasing complexity at circuit-level, with the extension from CMOS-only SoCs towards MEMS-and-CMOS SoCs.

Notes

Acknowledgements

The authors wish to acknowledge the CSEM design teams that contributed to the SoC cases described above: Claude Arm, Flavio Rampogna, Silvio Todeschini, Ricardo Caseiro of the “SoC and Digital Group”, Pierre-François Ruedi, Edoardo Franzi, François Kaess, Eric Grenet, Pascal Heim, Pierre Alain Beuchat, of the “Vision Sensor Group”, D. Ruffieux, F. Pengg, M. Kucera, A. Vouilloz, J. Chabloz, M. Contaldo, F. Giroud, N. Raemy of the “RF and Analog IC Group” and E. Le Roux, P. Volet of the “Digital Radio Group”.

The authors also wish to acknowledge the EU project MAP2 partners (CRAFT-031984), i.e. OFFIS, ChipVision, Politecnico di Torino and BullDAST, for the design methodologies described in Sect. 3. The authors also acknowledge the industrial contributions from Hager and Semtech for the WiseNET SoC, and Abilis for the MACGIC-based SoC for mobile TV.

References

  1. 1.
  2. 2.
    Enz, C., et al.: WiseNET: an ultra-low power wireless sensor network solution. Computer 37, 62–70 (2004) CrossRefGoogle Scholar
  3. 3.
    Rabaey, J.: Managing power dissipation in the generation-after-next wireless systems. In: FTFC’99, Paris, France, June 1999 Google Scholar
  4. 4.
    Vittoz, E.: Weak inversion for ultimate low-power logic. In: Piguet, C. (ed.) Low-Power Electronics Design. CRC Press, Boca Raton (2004). Chap. 16 Google Scholar
  5. 5.
    Hanson, S., Zhai, B., Blaauw, D., Sylvester, D., Bryant, A., Wang, X.: Energy optimality and variability in subthreshold design. In: Intl. Symp. on Low Power Electronics and Design, pp. 363–365 (2006) CrossRefGoogle Scholar
  6. 6.
    Henzinger, T., Sifakis, J.: The discipline of embedded systems design. Computer 40, 32–40 (2007) CrossRefGoogle Scholar
  7. 7.
    Arm, C., Masgonty, J.-M., Piguet, C.: Double-latch clocking scheme for low-power I.P. Cores. In: PATMOS, Goettingen, Germany, September 13–15, 2000 Google Scholar
  8. 8.
    Donno, M., Ivaldi, A., Benini, L., Macii, E.: Clock-tree power optimization based on RTL clock-gating. In: Proc. DAC’03, 40th Design Automation Conference (DAC’03), p. 622 (2003) CrossRefGoogle Scholar
  9. 9.
    Benini, L., et al.: A refinement methodology for clock gating optimization at layout level in digital circuits. J. Low Power Electron. 6(1), 44–55 (2010) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Arm, C., Masgonty, J.-M., Morgan, M., Piguet, C., Pfister, P.-D., Rampogna, F., Volet, P.: Low-power quad MAC 170 μW/MHz 1.0 V MACGIC DSP core. In: ESSCIRC, Montreux, Switzerland, Sept. 19–22, 2006 Google Scholar
  11. 11.
    Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003) CrossRefGoogle Scholar
  12. 12.
    Schuster, C., Nagel, J.-L., Piguet, C., Farine, P.-A.: Leakage reduction at the architectural level and its application to 16 bit multiplier architectures. In: PATMOS ’04, Santorini Island, Greece, September 15–17, 2004 Google Scholar
  13. 13.
    Schuster, C., Piguet, C., Nagel, J.-L., Farine, P.-A.: An architecture design methodology for minimal total power consumption at fixed V dd and V th. J. Low Power Electron. 1(1), 1–8 (2005) CrossRefGoogle Scholar
  14. 14.
    Schuster, C., Nagel, J.-L., Piguet, C., Farine, P.-A.: Architectural and technology influence on the optimal total power consumption. In: DATE 2006, Munich, March 6–10, 2006 Google Scholar
  15. 15.
    Zhai, B., Blaauw, D., Sylvester, D., Flautner, K.: Theoretical and practical limits of dynamic voltage scaling. In: DAC 2004, pp. 868–873 (2004) CrossRefGoogle Scholar
  16. 16.
    Hanson, S., Zhai, B., Blaauw, D., Sylvester, D., Bryant, A., Wang, X.: Energy optimality and variability in subthreshold design. In: International Symposium on Low Power Electronics and Design, ISLPED 2006, pp. 363–365 (2006) CrossRefGoogle Scholar
  17. 17.
    Kwong, J., et al.: A 65 nm Sub-Vt microcontroller with integrated SRAM and switched-capacitor DC-DC converter. In: ISSCC’08, pp. 318–319 (2008) Google Scholar
  18. 18.
    Piguet, C., Berweiler, G., Voirol, C., Dijkstra, E., Rijmenants, J., Zinszner, R., Stauffer, M., Joss, M.: ALADDIN: a CMOS gate-matrix layout system. In: Proc. of ISCAS 88, Espoo, Helsinki, Finland, p. 2427 (1988) Google Scholar
  19. 19.
    Haykel Ben Jamaa, M., Moselund, K.E., Atienza, D., Bouvet, D., Ionescu, A.M., Leblebici, Y., De Micheli, G.: Fault-tolerant multi-level logic decoder for nanoscale crossbar memory arrays. In: Proc. ICCAD’07, pp. 765–772 Google Scholar
  20. 20.
    Peiris, V., et al.: A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 μm CMOS. In: Int. Solid-State Circ. Conf. Dig. of Tech. Papers, Feb. 2005, pp. 258–259 (2005) Google Scholar
  21. 21.
    El-Hoiydi, A., Decotignie, J.-D., Enz, C., Le Roux, E.: WiseMAC, an ultra low power MAC protocol for the WiseNET wireless sensor network. In: SenSys’03, Los Angeles, CA, USA, November 5–7, 2003 Google Scholar
  22. 22.
    Arm, C., Gyger, S., Masgonty, J.-M., Morgan, M., Nagel, J.-L., Piguet, C., Rampogna, F., Volet, P.: Low-power 32-bit dual-MAC 120 μW/MHz 1.0 V icyflex DSP/MCU core. In: ESSCIRC, Edinburgh, Scotland, UK, Sept. 15–19, 2008 Google Scholar
  23. 23.
  24. 24.
    Huang, Yu, et al.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1316 (2001) CrossRefGoogle Scholar
  25. 25.
    Schmid, A., Leblebici, Y.: Array of nanometer-scale devices performing logic operations with fault-tolerant capability. In: Fourth IEEE Conference on Nanotechnology IEEE-NANO (2004) Google Scholar
  26. 26.
    Ecoffey, S., Pott, V., Bouvet, D., Mazza, M., Mahapatra, S., Schmid, A., Leblebici, Y., Declercq, M.J., Ionescu, A.M.: Nano-wires for room temperature operated hybrid CMOS-NANO integrated circuits. In: Solid-State Circuits Conference, ISSCC 2005, 6–10 Feb. 2005, pp. 260–597, vol. 1 (2005) CrossRefGoogle Scholar
  27. 27.
    Frei, J., et al.: Body effect in tri- and pi-gate SOI MOSFETS. IEEE Electron Device Lett. 25(12), 813–815 (2004) CrossRefGoogle Scholar
  28. 28.
    Singh, N., et al.: High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 27(5), 383–386 (2006) CrossRefGoogle Scholar
  29. 29.
    Kheradmand Boroujeni, B., et al.: Reverse Vgs (RVGS): a new method for controlling power and delay of logic gates in sub-VT regime. Invited talk at VLSI-SoC, Rhodes Island, Oct. 13–15, 2008 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. Piguet
    • 1
  • J.-L. Nagel
    • 1
  • V. Peiris
    • 1
  • S. Gyger
    • 1
  • D. Séverac
    • 1
  • M. Morgan
    • 1
  • J.-M. Masgonty
    • 1
  1. 1.CSEMNeuchâtelSwitzerland

Personalised recommendations