Design Methods for Energy Harvesting

The Design of an Energy- and Data-Driven Platform
  • Cyril Condemine
  • Jérôme Willemin
  • Guy Waltisperger
  • Jean-Frédéric Christmann


An energy harvesting system is a particularly heterogeneous system, including energy harvester, battery, antenna, sensors and electronic blocks. The main issues for this kind of system are the energy converter efficiency for small power transfer, the load consumption (RF, sensors) in active and standby mode, and the embedded power management. This chapter is focused on the integration of an energy- and data-driven platform for autonomous systems. After a brief introduction on energy autonomy in microsystems, a global system description and specification are described. Then, three energy harvesting systems (mechanical vibrations, thermal flux, and solar radiation) with the associated electronics are presented. Finally, strategies for power management are introduced, with a focus on power path optimization.


  1. 1.
  2. 2.
    CATRENE Working Group on Energy Autonomous Systems: Energy autonomous systems: future trends in devices, technology, and systems, white paper Google Scholar
  3. 3.
    Fournier, J.-M., Salvi, C., Stochkolm, J.: Thermoélectricité: le renouveau grâce aux nanotechnologies. Techniques de l’ingénieur: Thermoélectricité (2006) Google Scholar
  4. 4.
  5. 5.
    Lhermet, H., Condemine, C., Plissonnier, M., Salot, R., Audebert, P., Rosset, M.: Efficient power management circuit: from thermal energy harvesting to above-IC microbattery storage. In: ISSCC (2007) Google Scholar
  6. 6.
    Doms, I., Merken, P., Mertens, R.P., Van Hoof, C.: Capacitive power-management circuit for micropower thermoelectric generators with a 2.1 μW controller. In: ISSCC (2008) Google Scholar
  7. 7.
    Palumbo, G., Pappalardo, D., Gaibotti, M.: Charge-pump circuits: power-consumption optimization. IEEE Trans. Circuits Syst. 49(11), 1535–1542 (2002) CrossRefGoogle Scholar
  8. 8.
    Ker, M.-D., Chen, S.-L., Tsai, C.-S.: Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes. IEEE J. Solid-State Circuits 41(5), 1100–1107 (2006) CrossRefGoogle Scholar
  9. 9.
    Despesse, G., Chaillout, J.J., Jager, T., Cardot, F., Hoogerwerf, A.: Innovative structure for mechanical energy scavenging. In: Solid-State Sensors, Actuators and Microsystems Conference, Transducers 2007, June 2007, pp. 895–898 (2007) CrossRefGoogle Scholar
  10. 10.
    Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003) CrossRefGoogle Scholar
  11. 11.
    Despesse, G., Jager, T., Chaillout, J.-J., Leger, J.-M., Basrour, S.: Design and fabrication of a new system for vibration energy harvesting. In: Research in Microelectronics and Electronics, 25–28 July 2005, vol. 1, pp. 225–228 (2005) CrossRefGoogle Scholar
  12. 12.
    Stocker, A.A.: Compact integrated transconductance amplifier circuit for temporal differentiation. In: Proceedings of the 2003 International Symposium on Circuits and Systems. ISCAS ’03, 25–28 May 2003, vol. 1, pp. I-201–I-204 (2003) Google Scholar
  13. 13.
    Kim, G., Kim, M.-K., Chang, B.-S., Kim, W.: A low-voltage, low-power CMOS delay element. IEEE J. Solid-State Circuits 31(7), 966–971 (1996) CrossRefGoogle Scholar
  14. 14.
    Randall, F., Jacot, J.: The performance and modelling of 8 photovoltaic materials under variable light intensity and spectra. EPFL, Lausanne, Switzerland Google Scholar
  15. 15.
    Torres, E.O., Rincon-Mora, G.A.: Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution. In: International Conference on Energy, Environment and Disasters (INCEED), Charlotte, NC (2005) Google Scholar
  16. 16.
    Randall, J.F., Jacot, J.: Renew. Energy 28, 1851–1864 (2003) CrossRefGoogle Scholar
  17. 17.
    Brunelli, D., Benini, L., Moser, C., Thiele, L.: An efficient solar energy harvester for wireless sensor nodes. In: EDAA (2008) Google Scholar
  18. 18.
    Torres, E.O., Min, C., Forghani-zadeh, H.P., Gupta, V., Keskar, N., Milner, L.A., Hsuan-I, P., Rincon-Mora, G.A.: SiP integration of intelligent, adaptive, self-sustaining power management solutions for portable applications. In: Proceedings of IEEE International Symposium on Circuits and Systems. ISCAS 2006 (2006) Google Scholar
  19. 19.
    Amelifard, B., Pedram, M.: Optimal selection of voltage regulator modules in a power delivery network. In: Design Automation Conference. DAC ’07, pp. 168–173 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cyril Condemine
    • 1
  • Jérôme Willemin
    • 1
  • Guy Waltisperger
    • 1
  • Jean-Frédéric Christmann
    • 1
  1. 1.CEA-LETIMINATECGrenoble Cedex 9France

Personalised recommendations