Advertisement

Beyond Conventional CMOS Technology: Challenges for New Design Concepts

  • Costin Anghel
  • Amara Amara

Abstract

Technological advancements push the dimensions of CMOS (Complementary Metal–Oxide–Semiconductor) towards the ultimate scaling limits. This represents a driver in the research for alternative computation concepts beyond the CMOS. The chapter analyzes first the near term alternative, taking as example the SRAM (Static Random Access Memory). In the second part of the chapter, future circuits based on Carbon Nanotubes (CNTs), Nano-Wires (NWs) and Graphene Nano Ribbons (GNRs) are discussed. Two cases are distinguished: the memories and the logic cells. Passive and active Crossbars matrices are discussed for the memory case. Reconfigurable logic circuits based on Double Gate CNTs devices are reviewed for the logic cells. The final part of the chapter is dedicated to the hybrid molecular-CMOS architectures.

Keywords

Dynamic Random Access Memory Static Random Access Memory Double Gate Static Random Access Memory Cell Access Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ITRS homepage: http://www.itrs.net/
  2. 2.
    Amara, A., Rozeau, O.: Planar Double-Gate Transistors. Springer, Berlin (2009) CrossRefGoogle Scholar
  3. 3.
    Yamaoka, M., Osada, K., Tsuchiya, R., Horiuchi, M., Kimura, S., Kawahara, T.: In: Technical Digest of VLSI Circuits Symposium, pp. 288–291 (2004) Google Scholar
  4. 4.
    Guo, Z., Balasubramanian, S., Zlatanovici, R., King, T.-J., Nikolić, B.: In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 2–7 (2005) Google Scholar
  5. 5.
    Giraud, B., Thomas, O.: French Patent No. 08511027, 2008 Google Scholar
  6. 6.
    Iijima, S.: Nature 354, 56–58 (1991) CrossRefGoogle Scholar
  7. 7.
    Deleonibus, S. (ed.): Electronic Device Architectures for the Nano-CMOS Era: From Ultimate CMOS Scaling to Beyond CMOS Devices. World Scientific, Singapore (2008). ISBN 9814241288 Google Scholar
  8. 8.
    Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S.: Phys. Rev. Lett. 86, 1118–1121 (2001) CrossRefGoogle Scholar
  9. 9.
    Telg, H., Maultzsch, J., Reich, S., Hennrich, F., Thomsen, C.: Phys. Rev. Lett. 93, 177401 (2004) CrossRefGoogle Scholar
  10. 10.
    Strano, M.S., Doorn, S.K., Haroz, E.H., Kittrell, C., Hauge, R.H., Smalley, R.E.: Nano Lett. 3, 1091–1096 (2003) CrossRefGoogle Scholar
  11. 11.
    Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C.: Nat. Nanotechnol. 1, 60–65 (2006) CrossRefGoogle Scholar
  12. 12.
    Chen, Z., Du, X., Du, M.-H., Rancken, C.D., Cheng, H.-P., Rinzler, A.G.: Nano Lett. 3, 1245–1249 (2003) CrossRefGoogle Scholar
  13. 13.
    Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., Mclean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Science 302, 1545–1548 (2003) CrossRefGoogle Scholar
  14. 14.
    Tanaka, T., Jin, H., Miyata, Y., Kataura, H.: Appl. Phys. Express 1, 114001 (2008) CrossRefGoogle Scholar
  15. 15.
    Li, J., Meyyappan, M.: United States Patent No. 7094679 Google Scholar
  16. 16.
    Nihei, M., Horibe, M., Kawabata, A., Awano, Y.: Jpn. J. Appl. Phys. 43, 1856–1859 (2004) CrossRefGoogle Scholar
  17. 17.
    Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., Dai, H.: Nature 395, 878–881 (1998) CrossRefGoogle Scholar
  18. 18.
    Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhögl, W., Liebau, M., Unger, E., Hönlein, W.: Microelectron. Eng. 64, 399–408 (2002) CrossRefGoogle Scholar
  19. 19.
    Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Nature 415, 617–620 (2002) CrossRefGoogle Scholar
  20. 20.
    Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Nature 420, 57–61 (2002) CrossRefGoogle Scholar
  21. 21.
    Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H.J.: Adv. Funct. Mater. 12, 323–331 (2002) CrossRefGoogle Scholar
  22. 22.
    Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.-J., Yang, P.: Nature 422, 599–602 (2003) CrossRefGoogle Scholar
  23. 23.
    Cao, Q., Kim, H.-S., Pimparkar, N., Kulkarni, J.P., Wang, C., Shim, M., Roy, K., Alam, M.A., Rogers, J.A.: Nature 454, 495–500 (2008) CrossRefGoogle Scholar
  24. 24.
    Ju, S., Li, J., Liu, J., Chen, P.-C., Ha, Y.-G., Ishikawa, F., Chang, H., Zhou, C., Facchetti, A., Janes, D.B., Marks, T.J.: Nano Lett. 8, 997–1004 (2008) CrossRefGoogle Scholar
  25. 25.
    Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Nat. Mater. 8, 494–499 (2009) CrossRefGoogle Scholar
  26. 26.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666–669 (2004) CrossRefGoogle Scholar
  27. 27.
    de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Lia, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.: Solid State Commun. 143, 92–100 (2007) CrossRefGoogle Scholar
  28. 28.
    Sutter, P.W., Flege, J.-I., Sutter, E.A.: Nat. Mater. 7, 406–411 (2008) CrossRefGoogle Scholar
  29. 29.
    Coraux, J., N’Diaye, A.T., Engler, M., Busse, C., Wall, D., Buckanie, N., Meyer zu Heringdorf, F.-J., van Gastel, R., Poelsema, B., Michely, T.: New J. Phys. 11, 023006 (2009) CrossRefGoogle Scholar
  30. 30.
    Geim, A.K.: Science 324, 1530–1534 (2009) CrossRefGoogle Scholar
  31. 31.
    Tans, S.J., Verschueren, A.R.M., Dekker, C.: Nature 393, 49–52 (1998) CrossRefGoogle Scholar
  32. 32.
    Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, Ph.: Appl. Phys. Lett. 73, 2447 (1998) CrossRefGoogle Scholar
  33. 33.
    Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Nature 424, 654–657 (2003) CrossRefGoogle Scholar
  34. 34.
    Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Nano Lett. 4, 1319–1322 (2004) CrossRefGoogle Scholar
  35. 35.
    Martel, R., Derycke, V., Lavoie, C., Appenzeller, J., Chan, K.K., Tersoff, J., Avouris, Ph.: Phys. Rev. Lett. 87, 256805 (2001) CrossRefGoogle Scholar
  36. 36.
    Avouris, Ph.: Chem. Phys. 281, 429–445 (2002) CrossRefGoogle Scholar
  37. 37.
    Wind, S.J., Appenzeller, J., Avouris, Ph.: Phys. Rev. Lett. 91, 058301 (2003) CrossRefGoogle Scholar
  38. 38.
    Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, Ph.: Phys. Rev. Lett. 93, 196805 (2004) CrossRefGoogle Scholar
  39. 39.
    Koo, S.-M., Li, Q., Edelstein, M.D., Richter, C.A., Vogel, E.M.: Nano Lett. 5, 2519–2523 (2005) CrossRefGoogle Scholar
  40. 40.
    Chen, B., Wei, J., Lo, P., Wang, H., Lai, M., Tsai, M., Chao, T., Lin, H., Huang, T.: Solid-State Electron. 50, 1341–1348 (2006) CrossRefGoogle Scholar
  41. 41.
    Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.D.: Science 280, 1716–1721 (1998) CrossRefGoogle Scholar
  42. 42.
    Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Proc. IEEE 91, 1940–1957 (2003) CrossRefGoogle Scholar
  43. 43.
    DeHon, A.: IEEE Trans. Nanotechnol. 2, 23–32 (2003) CrossRefGoogle Scholar
  44. 44.
    Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.-H., Lieber, C.M.: Science 294, 1313–1317 (2001) CrossRefGoogle Scholar
  45. 45.
    Duan, X.F., Huang, Y., Lieber, C.M.: Nano Lett. 2, 487–490 (2002) CrossRefGoogle Scholar
  46. 46.
    Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., Lieber, C.M.: Nano Lett. 4, 915–919 (2004) CrossRefGoogle Scholar
  47. 47.
    Dong, Y., Yu, G., McAlpine, M.C., Lu, W., Lieber, C.M.: Nano Lett. 8, 386–391 (2008) CrossRefGoogle Scholar
  48. 48.
    Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M.: IEEE J. Solid-State Circuits 40, 168–176 (2005) CrossRefGoogle Scholar
  49. 49.
    Wu, W., Jung, G.-Y., Olynick, D.L., Straznicky, J., Li, Z., Li, X., Ohlberg, D.A.A., Chen, Y., Wang, S.-Y., Liddle, J.A., Tong, W.M., Williams, R.S.: Appl. Phys. A 80, 1173–1178 (2005) CrossRefGoogle Scholar
  50. 50.
    Green, J.E., Choi, J.W., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H.-R., Stoddart, J.F., Heath, J.R.: Nature 445, 414–417 (2007) CrossRefGoogle Scholar
  51. 51.
    Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.-S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.-In., Moon, J.T.: In: Technical Digest of IEEE International Electron Devices Meeting, pp. 587–590 (2004) CrossRefGoogle Scholar
  52. 52.
    Dietrich, S., Angerbauer, M., Ivanov, M., Gogl, D., Hoenigschmid, H., Kund, M., Liaw, C., Markert, M., Symanczyk, R., Altimime, L., Bournat, S., Mueller, G.: IEEE J. Solid-State Circuits 42, 839–845 (2007) CrossRefGoogle Scholar
  53. 53.
    Cui, Y., Lieber, C.M.: Science 291, 851–853 (2001) CrossRefGoogle Scholar
  54. 54.
    Whang, D., Jin, S., Wu, Y., Lieber, C.M.: Nano Lett. 3, 1255–1259 (2003) CrossRefGoogle Scholar
  55. 55.
    Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., Lieber, C.M.: Science 289, 94–97 (2000) CrossRefGoogle Scholar
  56. 56.
    Collier, C.P., Wong, E.W., Belohradský, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., Heath, J.R.: Science 285, 391–394 (1999) CrossRefGoogle Scholar
  57. 57.
    Chen, Y., Jung, G.-Y., Ohlberg, D.A.A., Li, X., Stewart, D.R., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F., Williams, R.S.: Nanotechnology 14, 462–468 (2003) CrossRefGoogle Scholar
  58. 58.
    Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J.U., Torres, C.M.S.: Nanotechnology 12, 91–95 (2001) CrossRefGoogle Scholar
  59. 59.
    Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Science 272, 85–87 (1996) CrossRefGoogle Scholar
  60. 60.
    Melosh, N.A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P.M., Heath, J.R.: Science 300, 112–115 (2003) CrossRefGoogle Scholar
  61. 61.
    Brueck, S.R.J.: In: Guenther, A.H., Holst, G.C. (eds.) International Trends in Applied Optics, pp. 85–110. SPIE, Bellingham (2002) Google Scholar
  62. 62.
    Lu, W., Lieber, C.M.: Nat. Mater. 6, 841–850 (2007) CrossRefGoogle Scholar
  63. 63.
    Scott, J.C., Bozano, L.D.: Adv. Mater. 19, 1452–1463 (2007) CrossRefGoogle Scholar
  64. 64.
    Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Science 278, 252–254 (1997) CrossRefGoogle Scholar
  65. 65.
    Dimitrakopoulos, C.D., Malenfant, P.R.L.: Adv. Mater. 14, 99–117 (2002) CrossRefGoogle Scholar
  66. 66.
    Horowitz, G.: J. Mater. Res. 19, 1946–1962 (2004) CrossRefGoogle Scholar
  67. 67.
    Singh, T.B., Sariciftci, N.S.: Annu. Rev. Mater. Res. 36, 199–230 (2006) CrossRefGoogle Scholar
  68. 68.
    Waser, R., Aono, M.: Nat. Mater. 6, 833–840 (2007) CrossRefGoogle Scholar
  69. 69.
    Bogani, L., Wernsdorfer, W.: Nat. Mater. 7, 179–186 (2008) CrossRefGoogle Scholar
  70. 70.
    Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: Science 289, 1172 (2000) CrossRefGoogle Scholar
  71. 71.
    Credi, A., Ferrer, B.: Pure Appl. Chem. 77, 1051–1057 (2005) CrossRefGoogle Scholar
  72. 72.
    Serreli, V., Lee, C.-F., Kay, E.R., Leigh, D.A.: Nature 445, 523–527 (2007) CrossRefGoogle Scholar
  73. 73.
    Luo, Y., Collier, C.P., Jeppesen, J.O., Nielsen, K.A., DeIonno, E., Ho, G., Perkins, J., Tseng, H.-R., Yamamoto, T., Stoddart, J.F., Heath, J.R.: ChemPhysChem 3, 519–525 (2002) CrossRefGoogle Scholar
  74. 74.
    Snider, G.S.: United States Patent No. 7203789, 2001 Google Scholar
  75. 75.
    Snider, G.: United States Patent No. 7359888, 2003 Google Scholar
  76. 76.
    Kuekes, P.J.: United States Patent No. 6586965, 2003 Google Scholar
  77. 77.
    Stewart, D.R., Ohlberg, D.A.A., Beck, P.A., Chen, Y., Williams, R.S.: Nano Lett. 4, 133–136 (2004) CrossRefGoogle Scholar
  78. 78.
    Blackstock, J.J., Stickle, W.F., Donley, C.L., Stewart, D.R., Williams, R.S.: J. Phys. Chem. C 111, 16–20 (2007) CrossRefGoogle Scholar
  79. 79.
    Lau, C.N., Stewart, D.R., Williams, R.S., Bockrath, M.: Nano Lett. 4, 569–572 (2004) CrossRefGoogle Scholar
  80. 80.
    Dichtel, W.R., Heath, J.R., Stoddart, J.F.: Philos. Trans. R. Soc. Lond. A 365, 1607–1625 (2007) CrossRefGoogle Scholar
  81. 81.
    Ward, J.W., Meinhold, M., Segal, B.M., Berg, J., Sen, R., Sivarajan, R., Brock, D.K., Rueckes, T.: In: Non-Volatile Memory Technology Symposium, pp. 34–38 (2004) Google Scholar
  82. 82.
    Jang, J.E., Cha, S.N., Choi, Y., Amaratunga, G.A.J., Kang, D.J., Hasko, D.G., Jung, J.E., Kim, J.M.: Appl. Phys. Lett. 87, 163114 (2005) CrossRefGoogle Scholar
  83. 83.
    Badzey, R.L., Zolfagharkhani, G., Gaidarzhy, A., Mohanty, P.: Appl. Phys. Lett. 85, 3587–3589 (2005) CrossRefGoogle Scholar
  84. 84.
    Tsuchiya, Y., Takai, K., Momo, N., Nagami, T., Mizuta, H., Oda, S., Yamaguchi, S., Shimada, T.: J. Appl. Phys. 100, 094306 (2006) CrossRefGoogle Scholar
  85. 85.
    McClelland, G.M., Atmaja, B.: Appl. Phys. Lett. 89, 161918 (2006) CrossRefGoogle Scholar
  86. 86.
    Rueckes, T., Segal, B.M., Vogeli, B., Brock, D.K., Jaiprakash, V.C., Bertin, C.L., United States Patent No. 6944054, 2003 Google Scholar
  87. 87.
    Jo, S.H., Lu, W.: Nano Lett. 8, 392–397 (2008) CrossRefGoogle Scholar
  88. 88.
    Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Science 293, 1289–1292 (2001) CrossRefGoogle Scholar
  89. 89.
    Stix, G.: Sci. Am., February 2005, 82–85 Google Scholar
  90. 90.
    Confidential data provided to the authors by G. Schmergel, President and CEO of Nantero, Inc Google Scholar
  91. 91.
  92. 92.
    Li, C., Ly, J., Lei, B., Fan, W., Zhang, D., Han, J., Meyyappan, M., Thompson, M., Zhou, C.: J. Phys. Chem. B 108, 9646–9649 (2004) CrossRefGoogle Scholar
  93. 93.
    Li, C., Fan, W., Lei, B., Zhang, D., Han, S., Tang, T., Liu, X., Liu, Z., Asano, S., Meyyappan, M., Han, J., Zhou, C.: Appl. Phys. Lett. 84, 1949 (2004) CrossRefGoogle Scholar
  94. 94.
    Borghetti, J., Derycke, V., Lenfant, S., Chenevier, P., Filoramo, A., Goffman, M., Vuillaume, D., Bourgoin, J.-P.: Adv. Mater. 18, 2535–2540 (2006) CrossRefGoogle Scholar
  95. 95.
    Anghel, C., Derycke, V., Filoramo, A., Lenfant, S., Giffard, B., Vuillaume, D., Bourgoin, J.-P.: Nano Lett. 8, 3619–3625 (2008) CrossRefGoogle Scholar
  96. 96.
    Jalabert, A., Clermidy, F., Amara, A.: In: Proc. of IEEE International Conference on Electronics, Circuits and Systems, pp. 1034–1037 (2006) Google Scholar
  97. 97.
    Jalabert, A., Clermidy, F., Amara, A.: Molecular Electronics Materials, Devices and Applications. Springer, Berlin (2008). ISBN 978-1-4020-8593-2 Google Scholar
  98. 98.
    O’Connor, I., Liu, J., Gaffiot, F., Pregaldiny, F., Lallement, C., Maneux, C., Goguet, J., Fregonese, S., Zimmer, T., Anghel, L., Dang, T.-T., Leveugle, R.: IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 2365–2379 (2007) CrossRefGoogle Scholar
  99. 99.
    Ben Jamaa, M.H., Atienza, D., Leblebici, Y., De Micheli, G.: In: Proc. of ACM/IEEE Design Automation Conference, DAC, pp. 339–340 (2008) Google Scholar
  100. 100.
    Budiu, M., Goldstein, S.C.: In: Proc. of The 28th Annual International Symposium on Computer Architecture (2001) Google Scholar
  101. 101.
    Lee, C.-F., Leigh, D.A., Pritchard, R.G., Schultz, D., Teat, S.J., Timco, G.A., Winpenny, R.E.P.: Nature 458, 314–318 (2009) CrossRefGoogle Scholar
  102. 102.
    Strukov, D.B., Likharev, K.K.: Nanotechnology 16, 888–900 (2005) CrossRefGoogle Scholar
  103. 103.
    Strukov, D.B., Likharev, K.K.: Nanotechnology 16, 137–148 (2005) CrossRefGoogle Scholar
  104. 104.
    Snider, G.S., Williams, R.S.: Nanotechnology 18, 035204 (2007) CrossRefGoogle Scholar
  105. 105.
    Hutchby, J.: In: ITRS Public Conference, Dec. 2007 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institut Superieur d’Electronique de Paris (ISEP)ParisFrance

Personalised recommendations