Advertisement

Subaqueous Landslides

  • Fabio Vittorio De Blasio
Chapter

Abstract

On July 17, 1998 an earthquake shook the north-eastern shores of Papua New Guinea. The earthquake itself was not a particularly powerful one, and did not elicit much concern among the population, used to live on a seismic land. But after some minutes the sea level began to fall rapidly, unveiling the sea bottom along the shore. After short time, a first pulse of a series of three tsunami waves was travelling landward. Water towered 15 m above normal level, killing about 3,000 persons.

Keywords

Debris Flow Drag Force Lift Force Tsunami Wave Rock Avalanche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami – comparing field observations with numerical simulations. Mar Petroleoum Geol 22:195–208CrossRefGoogle Scholar
  2. Bourgeois J (2009) Geological effects and records of tsunamis. In: Robinson A, Bernard EN (eds) The sea, vol 15, Tsunamis. Harvard University Press, Cambridge, pp 53–91Google Scholar
  3. Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sed Geol 200:166–183CrossRefGoogle Scholar
  4. De Blasio FV (2009) Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalancher. Granular Matter 11:179–184CrossRefGoogle Scholar
  5. De Blasio FV, Engvik L, Harbitz CB, Elverhøi A (2004) Hydroplaning and submarine debris flows. J Geophys Res 109:C01002. doi: 10.1029/2002JC001714 CrossRefGoogle Scholar
  6. De Blasio FV, Elverhøi A, Issler D, Harbitz CB, Bryn P, Lien R (2005) On the dynamics of subaqueous clay rich gravity mass flow – the giant Storegga slide, Norway. Mar Petrol Geol 22:179–186CrossRefGoogle Scholar
  7. De Blasio FV, Elverhøi A, Engvik LE, Issler D, Gauer P, Harbitz C (2006) Understanding the high mobility of subaqueous debris flows. Norw J Geol 86:275–284Google Scholar
  8. Dickens GR, O’Neil JR, Rea DK, Owen RM (1955) Dissociation of oceanic methane as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971CrossRefGoogle Scholar
  9. Edgers L, Karlsrud K (1982) Soil flows generated by submarine slides: case studies and consequences. Norwegian Geotech Inst Bull 143:1–11Google Scholar
  10. Elverhøi A, De Blasio FV, Butt FA, Issler D, Harbitz C, Engvik L, Solheim A, Marr J (2002) Submarine mass-wasting on glacially influenced continental slopes-processes and dynamics. In: Dowdeswell JA, CÓ Cofaigh (eds) Glacier-influenced sedimentation on high-latitude continental margins. Geological Society, London, pp 73–87, Special publication 203Google Scholar
  11. Elverhøi A, Breien H, De Blasio FV, Harbitz CB, Pagliardi M (2010) Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. Ocean Dyn 60:1027–1046. doi: 10.1007//s10236-010-0317-z CrossRefGoogle Scholar
  12. Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57CrossRefGoogle Scholar
  13. Gauer P, Elverhøi A, Issler D, De Blasio FV (2006) On numerical simulations of subaqueous slides: back-calculations of laboratory experiments of clay-rich slides. Norw J Geol 86:295–300Google Scholar
  14. Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga slide. Mar Petrol Geol 22:123–136CrossRefGoogle Scholar
  15. Hampton MA, Lee HJ, Locat J (1996) Submarine slides. Rev Geophys 34:33–59CrossRefGoogle Scholar
  16. Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Norw J Geol 86:249–258Google Scholar
  17. Hsu KJ (2002) Physics of sedimentology: textbook and reference. Springer, BerlinGoogle Scholar
  18. Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333CrossRefGoogle Scholar
  19. Ilstad T, De Blasio FV, Elverhøi A, Harbitz CB, Engvik L, Longva O, Marr J (2004) On the frontal dynamics and morphology of submarine debris flows. Mar Geol 213:481–497CrossRefGoogle Scholar
  20. Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flows with graphical user interface. Comput Geosci 27(6):721–733Google Scholar
  21. Kuijpers A, Nielsen T, Akhmetzhanov A, de Haas H, Kenyon NH, van Weering TCE (2001) Late quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Mar Lett 20:149–159CrossRefGoogle Scholar
  22. Levin B, Nosov M (2009) Physics of tsunami. Springer, BerlinGoogle Scholar
  23. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212CrossRefGoogle Scholar
  24. Longva O, Janbu N, Blikra LH, Bøe R (2003) The 1996 Finneidfjord slide; seafloor failure and slide dynamics. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer, Dordrecht, pp 531–538CrossRefGoogle Scholar
  25. Mohrig D, Whipple KX, Hondzo M, Ellis C, Parker G (1998) Hydroplaning of subaqueous debris flows. Geol Soc Am Bull 110:387–394CrossRefGoogle Scholar
  26. Schlichting W (1960) Boundary layer theory. Wiley, New YorkGoogle Scholar
  27. Urgeles R, Canals M, Masson DG, Gee MJR (2003) El Hierro: shaping of oceanic island by mass wasting. In: Mienert J, Weaver P (eds) European margin sediment dynamics. Springer, BerlinGoogle Scholar
  28. Vanneste M, Harbitz CB, De Blasio FV, Glimsdal S, Mienert J, Elverhøi A (2010) Hinlopen-Yermak landslide, Arctic Ocean-geomorphology, landslide dynamics and tsunami simulation. In: C Shipp (ed), SEPM 34 volGoogle Scholar
  29. Nissen SE, Haskell NL, Steiner CT, Coterill KL (1999) Debris flow outrunner blocks, glide tracks, and pressure ridges identified on the Nigerian continental slope using 3-D seismic coherency. The Leading Edge Soc Explor Geophysicists 18(5):550–561Google Scholar
  30. Prior DB, Borhold BD, Coleman JM, Bryant WR (1982) Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10:588–592CrossRefGoogle Scholar
  31. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  32. Masson DG, Canals M, Alonso B, Urgeles R, Hühnerbach, V (1998) The Canary debris flow: source area morphology and failure mechanisms. Sedimentology 45:411–432CrossRefGoogle Scholar
  33. Gauer P, Kvalstad TJ, Forsberg CF, Bryn P, Berg K (2005) The last phase of the Storegga slide: simulation of retrogressive slide dynamics and comparison with slide-scar morphology. Mar Petrol Geol 22:171–178CrossRefGoogle Scholar
  34. Gee MJR, Gawthorpe RL, Friedmann JS (2005) Giant striations at the base of a submarine landslide. Mar Geol 214:287–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fabio Vittorio De Blasio
    • 1
  1. 1.NHAZCA s.r.l., spin-off “Sapienza” UniversityRomeItaly

Personalised recommendations