Skip to main content

Coercivity Mechanism in Nanocrystalline and Bonded Magnets

  • Conference paper
Bonded Magnets

Part of the book series: NATO Science Series ((NAII,volume 118))

Abstract

The interpretation of the coercive field of hard magnetic materials has been a highly active field since the early times of commercial use of permanent magnets (pms). Whereas the early pms were based on the pinning of domain walls by grain boundaries, precipitations and dislocations, for AlNiCo and hard ferrites the nucleation mechanism became relevant. This latter mechanism also prevails in numerous rare-earth-transition metal compounds of sintered and nanocrystalline (nc) pms. In spite of worldwide activities on models of coercivity mechanisms the discussions have not led to a final general agreement concerning the dominant coercivity mechanisms in nc systems of bulk pms and bonded pms. It is the aim of this contribution to show the dominance of the nucleation mechanism in nc and bonded pms. Experimental results on the temperature dependence of the coercivity and its dependence on the special microstructures of different types of pms and the role of grain boundaries will be discussed within the framework of the nucleation coercivity model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barthem, V.T.M.S., Givord, D., Rossignol, M.F. and Tenaud, P. (2002) Physica B 319, 127.

    Article  ADS  Google Scholar 

  • Bauer, J., Seeger, M. and Kronmüller, H. (1996) J. Appl. Phys. 80, 1667.

    Article  ADS  Google Scholar 

  • Brown, W.F. (1945) Rev. Mod. Phys. 17, 15.

    Article  ADS  Google Scholar 

  • Brown, W.F. (1963) Micromagnetics, Intersience, New York.

    Google Scholar 

  • Coehoorn, R., de Mooji, D.B., Duchateau, J.P.W.B. and Buschow, K.H. (1988) J. Physique 49, C8, 669.

    Google Scholar 

  • Croat, J.J., Herbst, J.F., Lee, R.W. and Pinkerton, F.F. (1984) J. Appl. Phys. 55, 2078.

    Article  ADS  Google Scholar 

  • Ding, J., Mc Cormick, P.G. and Street, R. (1993) J. Magn. Magn. Mater. 124, Ll.

    Article  Google Scholar 

  • Feutrill, E.H., Folks, L., Mc Cormick, P.G. and Strnat, R., in: Proc. 8th Int. Symp. Magnetic Anisotropy and Coercivity in RE-TM Alloys (eds. L.A.F. Manwaring et al. Birmingham, University of Birmingham 1994) p. 297.

    Google Scholar 

  • Fischer, R., Schrefl, T., Kronmüller, H. and Fidler, J. (1995) J. Magn. Magn. Mater. 150, 329.

    Article  ADS  Google Scholar 

  • Fischer, R. and Kronmüller, H. (1996) Phys. Rev. B 54, 7284.

    Article  ADS  Google Scholar 

  • Fischer, R. and Kronmüller, H. (1998) Phys. stat. sol. (a) 166, 489.

    Article  ADS  Google Scholar 

  • Givord, D., Tenaud, P. and Viadieu, T. (1988) IEEE Trans. Magn. 24, 1921.

    Article  ADS  Google Scholar 

  • Goll, D., Seeger, M. and Kronmüller, H. (1998) J. Magn. Magn. Mater. 185, 49.

    Article  ADS  Google Scholar 

  • Goll, D. and Kronmüller, H. (2000a) Naturwissenschaften 87, 423.

    Article  ADS  Google Scholar 

  • Goll, D., Kleinschroth, I. and Kronmüller, H. (2000b) Proc. 16th Int. Workshop on REM and Their Applications (eds. H. Kaneko et al., The Japan Inst. of Metals, Sendai) p. 641.

    Google Scholar 

  • Goll, D. (2000c) Dr. rer. nat. Thesis, University of Stuttgart.

    Google Scholar 

  • Hadjipanayis, G.C., Hazelton, R.C. and Lawless, K.R. (1984) J. Appl. Phys. 55, 2073.

    Article  ADS  Google Scholar 

  • Hadjipanayis, G.C. and Withanawasam, L. (1995) IEEE Trans. Magn. 31, 3596.

    Article  ADS  Google Scholar 

  • Hock, S. and Kronmüller, H. (1987) 5th Int. Symp. on Magn. Anisotropy and Coercivity in RE-TM alloys (eds. C. Herget, H. Kronmüller and R. Poerschke, Bad Soden) p. 275.

    Google Scholar 

  • Kronmüller, H. (1987) Phys. stat. sol. (b) 144, 385.

    Article  ADS  Google Scholar 

  • Kronmüller, H., Durst, K.D. and Sagawa, M. (1988) J. Magn. Magn. Mater. 74, 291.

    Article  ADS  Google Scholar 

  • Kronmüller, H. and Schrefl, T. (1994) J. Magn. Magn. Mater. 129, 66.

    Article  ADS  Google Scholar 

  • Kronmüller, H., Fischer, R., Seeger, M. and Zern, A. (1996) J. Phys. D.: Appl. Phys. 29, 2274.

    Article  ADS  Google Scholar 

  • Kronmüller, H. and Bachmann, M. (2001) Physica B 306, 96.

    Article  ADS  Google Scholar 

  • Manaf, A., Buckley, R.A., Davies, H.A. and Leonowicz, M. (1991) J. Magn. Magn. Mater. 101, 360.

    Article  ADS  Google Scholar 

  • Martinek, G. and Kronmüller, H. (1990) J. Magn. Magn. Mater. 86, 177.

    Article  ADS  Google Scholar 

  • Rathenau, G.W. (1953) Rev. Mod. Phys. 25, 297.

    Article  ADS  Google Scholar 

  • Sagawa, M., Fujimura, S., Togawa, M. and Matsuura, Y. (1984) J. AppL Phys. 55, 2083.

    Article  ADS  Google Scholar 

  • Sagawa, M. and Hirosawa, S. (1988) J. Phys. (Paris) Colloq. 49, 617.

    Article  Google Scholar 

  • Schrefl, T., Fidler, J. and Kronmüller, H. (1994) Phys. Rev. B 49, 6100.

    Article  ADS  Google Scholar 

  • Schultz, L., Wecker, J. and Hellstern, E. (1987) J. Appl. Phys. 61, 3583.

    Article  ADS  Google Scholar 

  • Seitz, D. and Goll, D. (1998) Proc. 15th Int. Workshop on REM and Their Applications (eds. L. Schultz and K.H. Müller, Werkstoff-Informationsgesellschaft mBH, Hamburg) p. 69.

    Google Scholar 

  • Shirk, B.T. and Buessem, W.R. (1969) J. Appl. Phys. 40, 1294.

    Article  ADS  Google Scholar 

  • Smith, P.A.I., Ding, J., Street, R. and Mc Cormick, P.G. (1996) Scripta Mat. 34, 61.

    Article  Google Scholar 

  • Strnat, K.J., Hoffer, G. and Olsen, J.C. (1967) J. Appl. Phys. 38, 1001.

    Article  ADS  Google Scholar 

  • Verwey, E.J.W. and Hayman, P.W. (1941) Physica 8, 979.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Goll, D., Kronmüller, H. (2003). Coercivity Mechanism in Nanocrystalline and Bonded Magnets. In: Hadjipanayis, G.C. (eds) Bonded Magnets. NATO Science Series, vol 118. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1090-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1090-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1535-9

  • Online ISBN: 978-94-007-1090-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics