Skip to main content

Modelling and Microwave Properties of Artificial Materials with Negative Parameters

  • Chapter
Advances in Electromagnetics of Complex Media and Metamaterials

Part of the book series: NATO Science Series ((NAII,volume 89))

Abstract

In this review paper we discuss various possible physical realizations of artificial media with negative real parts of material parameters (wire media, split-ring resonators, omega and chiral particles, active composites). The physical phenomena behind the effect of negative parameters are explained, and analytical models for the material properties are given. Further, some simple electromagnetic systems which contain slabs of double-negative materials are studied: two-layer waveguides and one-dimensional electromagnetic crystals. Unusual properties of waves in these structures are discussed. The review describes results obtained mainly in the Radio Laboratory of the Helsinki University of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veselago, V.G. (1968) The electrodynamics of substances with simultaneously negative values of e and ft, Soviet Physics Uspekhi 10, 509–514 (originally pubished in Russian in Uspekhi Fizicheskikh Nauk 92, 1967, 517-526).

    Google Scholar 

  2. Shelby, R.A., Smith, D.R. and Schultz, S. (2001) Experimental verification of a negative index of refraction, Science 292, 77–79.

    Article  CAS  Google Scholar 

  3. Valanju, P.M., Walser, R.M. and Valanju, P.A. (2002) Wave refraction in negativeindex media: always positive and very inhomogeneous, Phys. Rev. Lett. 88, 187401(1–4).

    Article  Google Scholar 

  4. Maslovski, S.I. (2002) On the problem of negative refraction, submitted to Phys. Rev. Lett.

    Google Scholar 

  5. Pendry, J.B., (2000) Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969.

    Article  CAS  Google Scholar 

  6. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser S.C. and Schultz, S. (2000) Composite media with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184–4187.

    Article  CAS  Google Scholar 

  7. Pendry, J.B., Holden, A.J., Robbins D.J. and Stewart, W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47, 2075–2084.

    Article  Google Scholar 

  8. Kostin, M.V. and Shevchenko, V.V. (1993) Theory of artificial magnetic substances based on ring currents, Sov. J. Communic. Technology and Electronics 38, 78–83.

    Google Scholar 

  9. Kostin, M.V. and Shevchenko, V.V. (1994) Artificial magnetics based on double circular elements, Proc. of Bianisotropics′94, Périgueux, Prance, 49–56.

    Google Scholar 

  10. Brown, J. (1960) Artificial dielectrics, in: Progress in dielectrics 2, pp. 195–225.

    Google Scholar 

  11. King, R.J., Thiel, D.V. and Park, K.S. (1983) The synthesis of surface reactance using an artificial dielectric, IEEE Trans. Antennas and Propagat. 31, 471–476.

    Article  Google Scholar 

  12. Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, I. (1996) Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773–4776.

    Article  CAS  Google Scholar 

  13. Simovski, C.R. and Sauviac, B. (2002) Toward creating the isotropic media with negative refraction, submitted to Phys. Rev. B.

    Google Scholar 

  14. Simovski, C.R., Sauviac, B. and Tretyakov, S.A. (2002) Double split-ring resonators: analytical and numerical modelling, submitted to IEEE Trans. Antennas Propag.

    Google Scholar 

  15. Marques, R., Medina, F. and El-Idrissi, R.R. (2002) Role of bianisotropy in negative permeability and left-handed metamaterials, Phys. Rev. B 65, 14440(1–6).

    Google Scholar 

  16. Saadoum, M.M.I, and Engheta, N. (1992) A reciprocal phase shifter using novel pseudochiral or Omega medium, Microwave and Optical Technology Lett. 5, 184–188.

    Article  Google Scholar 

  17. Saadoun, M.M.I, and Engheta, N. (1994) Theoretical studies of electromagnetic properties of non-local Omega media, in Progress in Electromagnetic Research PIER9, pp. 351–397.

    Google Scholar 

  18. Mariotte, F., Sauviac, B. and Tretyakov, S.A. (2000) Artificial bianisotropic composites, Chapter 18 of the book Frontiers of Mathematical Methods in Electromagnetics, R. Mittra and D. Werner, Eds., IEEE Press.

    Google Scholar 

  19. Simovski, C.R., Tretyakov, S.A., Sochava, A.A., Sauviac, B. and Kharina, T.G. (1997) Antenna model for conductive omega particles, J. of Electromagnetic Waves Applic. 11, 1509–1530.

    Article  Google Scholar 

  20. Kharina, T.G., Tretyakov, S.A., Simovski, C.R., Sochava, A.A. and Bolioli, S. (1998) Experimental study of artificial Omega media, Electromagnetics 18, 437–457.

    Article  Google Scholar 

  21. Tretyakov, S.A. (2001) Meta-materials with wideband negative permittivity and permeability, Microwave and Optics Technology Lett. 31, 163–165.

    Article  Google Scholar 

  22. Smith, D.R. and Kroll, N. (2000) Negative refractive index in left-handed materials, Phys, Rev. Lett. 85, 2933–2936.

    Article  CAS  Google Scholar 

  23. Maslovski, S.I., Tretyakov, S.A. and Belov, P.A. (2002), Wire media with negative effective permittivity: a quasi-static model, Microwave and Optical Technol. Lett. 35, 47–51.

    Article  Google Scholar 

  24. Moses, C.A. and Engheta, N., (2001) Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions, Wave Motion 34, 301–317.

    Article  Google Scholar 

  25. Belov, P.A., Tretyakov, S.A. and Viitanen, A.J. (2002) Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires, J. Electromagnetic Waves and Applications 16, 1153–1170.

    Article  Google Scholar 

  26. Sipe, J.E. and Van Kranendonk, J. (1974) Macroscopic electromagnetic theory of resonant dielectrics, Phys. Rev. A 9, 1806–1822.

    Article  Google Scholar 

  27. Simovski, C.R., He, S. and Popov, M., (2000), On the dielectric properties of thin molecular or composite layers, Phys. Rev. B 62, 13718–13724.

    Article  CAS  Google Scholar 

  28. Simovski, C.R. and Sauviac, B., (2002), On the bulk averaging approach for obtaining the effective parameters of thin magnetic granular films, European Physical Journal: Applied Physics AP 17, 11–20.

    Article  Google Scholar 

  29. Tretyakov, S.A. and Viitanen, A.J. (2000) Plane waves in regular arrays of dipole scatterers and effective medium modelling, J. Opt. Soc. Am. A 17, 1791–1799.

    Article  Google Scholar 

  30. Jaggard, D.L., Mickelson, A.R. and Papas, C.T. (1979) On electromagnetic waves in chiral media, Appl. Phys. 18, 211–216.

    Article  Google Scholar 

  31. Tretyakov, S.A., Mariotte, F., Simovski, C.R., Kharina, T.G. and Heliot, J.-P. (1996) Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data, IEEE Trans. Antennas Propag. 44, 1006–1014.

    Article  Google Scholar 

  32. Auzanneau, F. and Ziolkowski, R.W. (1998) Theoretical study of synthetic bianisotropic materials, J. Electromagn. Waves Applic. 12, 353–370.

    Article  Google Scholar 

  33. Ziolkowski, R.W. (1997) The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials, IEEE Trans. Antennas Propag. 45, 656–671.

    Article  Google Scholar 

  34. Tretyakov, S.A. and Kharina, T.G. (2000) The perfectly matched layer as a synthetic material with active inclusions, Electromagnetics 20, 155–166.

    Article  Google Scholar 

  35. Nefedov, I.S. and Tretyakov, S.A. (2002) Waveguide containing a backward-wave slab, submitted to Radio Science.

    Google Scholar 

  36. Engheta, N. (2002) Guided waves in paired dielectric-metamaterial with negative permittivity and permeability layers, in Proc. of National Radio Science Meeting, Boulder, Colorado, USA, p. 66.

    Google Scholar 

  37. Nefedov, I.S. and Tretyakov, S.A. (2002) Photonic band gap structure containing metamaterial with negative permittivity and permeability, to appear in Phys. Rev. E.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tretyakov, S.A., Nefedov, I.S., Simovski, C.R., Maslovski, S.I. (2002). Modelling and Microwave Properties of Artificial Materials with Negative Parameters. In: Zouhdi, S., Sihvola, A., Arsalane, M. (eds) Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1067-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1067-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1102-3

  • Online ISBN: 978-94-007-1067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics