Advertisement

Modelling and Microwave Properties of Artificial Materials with Negative Parameters

  • S. A. Tretyakov
  • I. S. Nefedov
  • C. R. Simovski
  • S. I. Maslovski
Part of the NATO Science Series book series (NAII, volume 89)

Abstract

In this review paper we discuss various possible physical realizations of artificial media with negative real parts of material parameters (wire media, split-ring resonators, omega and chiral particles, active composites). The physical phenomena behind the effect of negative parameters are explained, and analytical models for the material properties are given. Further, some simple electromagnetic systems which contain slabs of double-negative materials are studied: two-layer waveguides and one-dimensional electromagnetic crystals. Unusual properties of waves in these structures are discussed. The review describes results obtained mainly in the Radio Laboratory of the Helsinki University of Technology.

Keywords

Negative Refraction Wire Array Effective Permittivity Negative Permittivity Negative Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veselago, V.G. (1968) The electrodynamics of substances with simultaneously negative values of e and ft, Soviet Physics Uspekhi 10, 509–514 (originally pubished in Russian in Uspekhi Fizicheskikh Nauk 92, 1967, 517-526).Google Scholar
  2. 2.
    Shelby, R.A., Smith, D.R. and Schultz, S. (2001) Experimental verification of a negative index of refraction, Science 292, 77–79.CrossRefGoogle Scholar
  3. 3.
    Valanju, P.M., Walser, R.M. and Valanju, P.A. (2002) Wave refraction in negativeindex media: always positive and very inhomogeneous, Phys. Rev. Lett. 88, 187401(1–4).CrossRefGoogle Scholar
  4. 4.
    Maslovski, S.I. (2002) On the problem of negative refraction, submitted to Phys. Rev. Lett. Google Scholar
  5. 5.
    Pendry, J.B., (2000) Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966–3969.CrossRefGoogle Scholar
  6. 6.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser S.C. and Schultz, S. (2000) Composite media with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84, 4184–4187.CrossRefGoogle Scholar
  7. 7.
    Pendry, J.B., Holden, A.J., Robbins D.J. and Stewart, W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47, 2075–2084.CrossRefGoogle Scholar
  8. 8.
    Kostin, M.V. and Shevchenko, V.V. (1993) Theory of artificial magnetic substances based on ring currents, Sov. J. Communic. Technology and Electronics 38, 78–83.Google Scholar
  9. 9.
    Kostin, M.V. and Shevchenko, V.V. (1994) Artificial magnetics based on double circular elements, Proc. of Bianisotropics′94, Périgueux, Prance, 49–56.Google Scholar
  10. 10.
    Brown, J. (1960) Artificial dielectrics, in: Progress in dielectrics 2, pp. 195–225.Google Scholar
  11. 11.
    King, R.J., Thiel, D.V. and Park, K.S. (1983) The synthesis of surface reactance using an artificial dielectric, IEEE Trans. Antennas and Propagat. 31, 471–476.CrossRefGoogle Scholar
  12. 12.
    Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, I. (1996) Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76, 4773–4776.CrossRefGoogle Scholar
  13. 13.
    Simovski, C.R. and Sauviac, B. (2002) Toward creating the isotropic media with negative refraction, submitted to Phys. Rev. B. Google Scholar
  14. 14.
    Simovski, C.R., Sauviac, B. and Tretyakov, S.A. (2002) Double split-ring resonators: analytical and numerical modelling, submitted to IEEE Trans. Antennas Propag. Google Scholar
  15. 15.
    Marques, R., Medina, F. and El-Idrissi, R.R. (2002) Role of bianisotropy in negative permeability and left-handed metamaterials, Phys. Rev. B 65, 14440(1–6).Google Scholar
  16. 16.
    Saadoum, M.M.I, and Engheta, N. (1992) A reciprocal phase shifter using novel pseudochiral or Omega medium, Microwave and Optical Technology Lett. 5, 184–188.CrossRefGoogle Scholar
  17. 17.
    Saadoun, M.M.I, and Engheta, N. (1994) Theoretical studies of electromagnetic properties of non-local Omega media, in Progress in Electromagnetic Research PIER9, pp. 351–397.Google Scholar
  18. 18.
    Mariotte, F., Sauviac, B. and Tretyakov, S.A. (2000) Artificial bianisotropic composites, Chapter 18 of the book Frontiers of Mathematical Methods in Electromagnetics, R. Mittra and D. Werner, Eds., IEEE Press.Google Scholar
  19. 19.
    Simovski, C.R., Tretyakov, S.A., Sochava, A.A., Sauviac, B. and Kharina, T.G. (1997) Antenna model for conductive omega particles, J. of Electromagnetic Waves Applic. 11, 1509–1530.CrossRefGoogle Scholar
  20. 20.
    Kharina, T.G., Tretyakov, S.A., Simovski, C.R., Sochava, A.A. and Bolioli, S. (1998) Experimental study of artificial Omega media, Electromagnetics 18, 437–457.CrossRefGoogle Scholar
  21. 21.
    Tretyakov, S.A. (2001) Meta-materials with wideband negative permittivity and permeability, Microwave and Optics Technology Lett. 31, 163–165.CrossRefGoogle Scholar
  22. 22.
    Smith, D.R. and Kroll, N. (2000) Negative refractive index in left-handed materials, Phys, Rev. Lett. 85, 2933–2936.CrossRefGoogle Scholar
  23. 23.
    Maslovski, S.I., Tretyakov, S.A. and Belov, P.A. (2002), Wire media with negative effective permittivity: a quasi-static model, Microwave and Optical Technol. Lett. 35, 47–51.CrossRefGoogle Scholar
  24. 24.
    Moses, C.A. and Engheta, N., (2001) Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions, Wave Motion 34, 301–317.CrossRefGoogle Scholar
  25. 25.
    Belov, P.A., Tretyakov, S.A. and Viitanen, A.J. (2002) Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires, J. Electromagnetic Waves and Applications 16, 1153–1170.CrossRefGoogle Scholar
  26. 26.
    Sipe, J.E. and Van Kranendonk, J. (1974) Macroscopic electromagnetic theory of resonant dielectrics, Phys. Rev. A 9, 1806–1822.CrossRefGoogle Scholar
  27. 27.
    Simovski, C.R., He, S. and Popov, M., (2000), On the dielectric properties of thin molecular or composite layers, Phys. Rev. B 62, 13718–13724.CrossRefGoogle Scholar
  28. 28.
    Simovski, C.R. and Sauviac, B., (2002), On the bulk averaging approach for obtaining the effective parameters of thin magnetic granular films, European Physical Journal: Applied Physics AP 17, 11–20.CrossRefGoogle Scholar
  29. 29.
    Tretyakov, S.A. and Viitanen, A.J. (2000) Plane waves in regular arrays of dipole scatterers and effective medium modelling, J. Opt. Soc. Am. A 17, 1791–1799.CrossRefGoogle Scholar
  30. 30.
    Jaggard, D.L., Mickelson, A.R. and Papas, C.T. (1979) On electromagnetic waves in chiral media, Appl. Phys. 18, 211–216.CrossRefGoogle Scholar
  31. 31.
    Tretyakov, S.A., Mariotte, F., Simovski, C.R., Kharina, T.G. and Heliot, J.-P. (1996) Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data, IEEE Trans. Antennas Propag. 44, 1006–1014.CrossRefGoogle Scholar
  32. 32.
    Auzanneau, F. and Ziolkowski, R.W. (1998) Theoretical study of synthetic bianisotropic materials, J. Electromagn. Waves Applic. 12, 353–370.CrossRefGoogle Scholar
  33. 33.
    Ziolkowski, R.W. (1997) The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials, IEEE Trans. Antennas Propag. 45, 656–671.CrossRefGoogle Scholar
  34. 34.
    Tretyakov, S.A. and Kharina, T.G. (2000) The perfectly matched layer as a synthetic material with active inclusions, Electromagnetics 20, 155–166.CrossRefGoogle Scholar
  35. 35.
    Nefedov, I.S. and Tretyakov, S.A. (2002) Waveguide containing a backward-wave slab, submitted to Radio Science.Google Scholar
  36. 36.
    Engheta, N. (2002) Guided waves in paired dielectric-metamaterial with negative permittivity and permeability layers, in Proc. of National Radio Science Meeting, Boulder, Colorado, USA, p. 66.Google Scholar
  37. 37.
    Nefedov, I.S. and Tretyakov, S.A. (2002) Photonic band gap structure containing metamaterial with negative permittivity and permeability, to appear in Phys. Rev. E. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • S. A. Tretyakov
    • 1
  • I. S. Nefedov
    • 2
  • C. R. Simovski
    • 3
  • S. I. Maslovski
    • 1
  1. 1.Radio LaboratoryHelsinki University of TechnologyFinland
  2. 2.Saratov DepartmentInstitute of Radio Engineering, Russian Academy of SciencesRussia
  3. 3.State Institute of Fine Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations