Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material

Using the Method of Auxiliary Sources
  • D. D. Karkashadze
  • F. G. Bogdanov
  • R. S. Zaridze
  • A. Y. Bijamov
  • C. Hafner
  • D. Erni
Part of the NATO Science Series book series (NAII, volume 89)

Abstract

This chapter proposes complex materials (anisotropic, chiral, Tellegen, and general biisotropic) as element base for Finite Photonic Crystal (FPC) devices, offers an effective method for their handling, illustrates possibilities of their numerical analysis and discusses results for FPC design. The approach is based on the Method of Auxiliary Sources (MAS) and its implementation to complex structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joannopoulos, J.D., Meade, R.D., Winn J.N. (1995) Photonic Crystals: Molding the Flow of Light, Princeton University Press, Singapore.Google Scholar
  2. 2.
    Yablonovitch, E., Gmitter, T.J., Meade, R.D., and Rappe, A.M., Brommer, K.D., and. Joannopoulos, J.D. (1991) Donor and acceptor modes in photonic band structures, Phys. Rev. Lett. 67 (24), 3380–3383.CrossRefGoogle Scholar
  3. 3.
    Mekis, Fan, A.S, and Joannopoulos, J.D. (1999). Absorbing boundary condition for finitedifference time-domain simulation of photonic crystal waveguides. IEEE Microwave and Guided Wave Letters 9, 502.CrossRefGoogle Scholar
  4. 4.
    Moreno, E. (2002) MMP Modeling and optimization of photonic crystals, optical devices, and nanostructures. PhD Thesis ETH, Zürich, N 14553.Google Scholar
  5. 5.
    Moreno, E., Erni, D., Hafner, Ch. (2002) Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures, J. Opt. Soc. Am. 19, No 1, 101–111.CrossRefGoogle Scholar
  6. 6.
    Hafner, Ch. (1998/S) MaX-1 A Visual Electromagnetics Platform for PCs, John Wiley, Chichester.Google Scholar
  7. 7.
    Popovidi-Zaridze, R.S., Karkashadze, D.D., Akhvlediani, G.Z, Khatiashvili, J.H. (1981) Investigation of the possibilities of the method of auxiliary sources in solution of the twodimensional electrodynamics problems. Radiotekhnika i Elektronika, 26, N2, 254–262 (in Russian).Google Scholar
  8. 8.
    Zaridze, R., Karkashadze, D., Khatiashvili, J. (1985) Method of auxiliary sources for investigation of along-regular waveguides, Tbilisi State University Press, Tbilisi (in Russian).Google Scholar
  9. 9.
    Karkashadze, D., Zaridze, R. (1995) The method of auxiliary sources in applied electrodynamics, Latsis Symposium on Computational Electromagnetics, Zürich, Switzerland, pp. 163–180.Google Scholar
  10. 10.
    Bogdanov, F.G., Karkashadze, D.D. (1998) Conventional method of auxiliary sources in the problems of electromagnetic scattering by the bodies of complex materials. Proc. Conf. on Electromagnetic and light scattering — Theory and applications, Bremen, Germany, pp. 133–140.Google Scholar
  11. 11.
    Bogdanov, F.G., Karkashadze, D.D., Zaridze, R.S. (1998) Propagation in and scattering by biisotropic objects of complicated shape, in Arne F. Jacob and Jens Reinert (eds.), Proceedings of 7 th Interational Conference on Complex Media (Bianisotropic ′98), Braunschweig, Germany, pp. 133–136.Google Scholar
  12. 12.
    Bogdanov, F.G., Karkashadze, D.D., Zaridze, R.S. (1998) New Materials Design: Scattering Problems and the Method of Auxiliary Sources, Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (D1PED-98), Lviv-Tbilisi, pp. 18–21.Google Scholar
  13. 13.
    Bogdanov, F.G., Karkashadze, D.D. (1998) Accumulating, directing and focusing properties of 2-D and 3-D objects of biisotropic materials, Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-98), Lviv-Tbilisi, pp. 93–96.Google Scholar
  14. 14.
    Bogdanov, F.G., Karkashadze, D.D., Saparishvili, G.A., Zaridze, R.S. (1999) Computer simulation of high-frequency scattering by the bodies of composite materials, in Proceedings of 4-th Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory and Applications, Vigo, Spain, pp. 295–302.Google Scholar
  15. 15.
    Bogdanov, F.G., Karkashadze, D.D., Zaridze, R.S. (1999) The method of auxiliary sources in electromagnetic scattering problems, in Th. Wriedt (eds.), Generalized multipole techniques for electromagnetic and light scattering, Elsevier Science B.V., pp. 143–172.Google Scholar
  16. 16.
    Bogdanov, F.G., Karkashadze, D.D., Zaridze, R.S., Bit-Babic, G.G., Tavzarashvili, K.N. (2000) About design of the adaptive antenna with chiral coating for portable cellular phones, in Proceedings of V International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2000), Lviv-Tbilisi, pp. 27–30.Google Scholar
  17. 17.
    Bogdanov, F.G., Karkashadze, D.D., Zaridze, R.S. (2000) Scattering and absorption problems solution upon the 3-D chiral and biisotropic objects, Proceedings of 8th International Conference on Electromagnetics of Complex media (BIANISOTROPICS 2000), Lisbon, pp. 233–236.Google Scholar
  18. 18.
    Bohren, C.F. (1974) Light scattering by an optically active sphere, Chem. Phys. Lett. 29, pp. 458–462.CrossRefGoogle Scholar
  19. 19.
    Engheta, N. and Jaggard, D.L. (1988) Electromagnetic chirality and its applications, IEEE Trans. Antennas Propagat. Soc. Newsletter, 30, 6–12.Google Scholar
  20. 20.
    Lakhtakia, A. (1994) Beltrami fields in chiral media, World Sci. Publ. Co., Singapore.Google Scholar
  21. 21.
    Lindell, I.V., Sihvola, A.H, Tretyakov, A.A., and Viitanen, A.J (1994) Electromagnetic waves in chiral and bi-Isotropic media, Artech House, Boston, London.Google Scholar
  22. 22.
    Cory, H. (1995) Chiral devices — an overview of canonical problems, Journ. Electromag. Waves and Applic, 9, No. 5/6, 805–829.CrossRefGoogle Scholar
  23. 23.
    Zaridze, R., Bit-Babik, G., Tavzarashvili, K., Uzunoglu, N., Economou, D. (2002) Wave Fields Singularity Aspects in Large-Size Scatterers and Inverse Problems, IEEE Transactions on Antennas and Propagation, 50, N.I, 50–59.CrossRefGoogle Scholar
  24. 24.
    Karkashadze, D.D. (2001) On status of main singularities in 3D scattering problems, in Proceedings of VI International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-200I), Lviv, pp 81–84.Google Scholar
  25. 25.
    Hafner, Ch. (1999) Post-modern Electromagnetics — Using intelligent Maxwell solvers, Wiley, Chichester.Google Scholar
  26. 26.
    Harrington, R. F. (1993) Field Computation by Moment Methods, Wiley-IEEE Press.Google Scholar
  27. 27.
    Kupradze, V.D. (1967) About approximates mathematical physics problem, Success of Mathematical Sciences, 22, N2, 59–107. (in Russian).Google Scholar
  28. 28.
    Kupradze, V.D, Aleksidze, M.A. (1964) The method of functional equations for approximate solution of some boundary problems. Journal of Appl. Math, and Math. Physics, 4, 683–715 (in Russian).Google Scholar
  29. 29.
    Aleksidze, M.A. (1991) Fundamental functions in approximate solutions of the boundary problems, Nauka, Moscow (in Russian).Google Scholar
  30. 30.
    Penrose, R., Ringler, W. (1986) Spinors and space-time, 1, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  31. 31.
    Moreno, E., Ern, D., and Hafner, Ch. (2002) Band structure computations of metallic photonic crystals with the multiple multipole method, Phys. Rev. B, 65, No 15,155120–1–155120–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • D. D. Karkashadze
    • 1
  • F. G. Bogdanov
    • 1
    • 2
  • R. S. Zaridze
    • 1
  • A. Y. Bijamov
    • 1
  • C. Hafner
    • 3
  • D. Erni
    • 3
  1. 1.Tbilisi State UniversityTbilisiGeorgia
  2. 2.Georgian Technical UniversityTbilisiGeorgia
  3. 3.Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations