Turbulent Transport in Rotating and Magnetized Fluids

  • L. L. Kitchatinov
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 124)


The theory of the eddy diffusion of magnetic fields, momentum, and heat in rotating and magnetized fluids is reviewed. Rotation and magnetic fields both produce an anisotropy in the eddy diffusion and decrease the diffusivity values. Examples of the significance of anisotropy and quenching are given. Anisotropy results in a decline of the direction of travel of dynamo waves from the lines of constant angular velocity towards the equator. Magnetic quenching of the eddy diffusion is significant for the MHD equilibrium in sunspots. Attention is drawn to the fact that the formally defined diffusion tensors for rotating fluids contain the terms responsible for the generation of large-scale fields, in line with the true diffusion. A possible role of the correspondent generation effects in the solar dynamo is briefly discussed.


Solar Phys Constant Angular Velocity Dynamo Model Solar Dynamo Dynamo Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brandenburg, A.: 2001. Astrophys. J. 550, 825.Google Scholar
  2. Brandt, P. N., G. B. Scharmer, S. Ferguson, R. A. Shine, T. D. Tarbell, and A. M. Title: 1988. Nature 335, 238.Google Scholar
  3. Durney, B. R. and J. Latour: 1978. Geophys. Astrophys. Fluid Dyn. 9, 241.Google Scholar
  4. Field, G. B. and E. G. Blackman: 2002. Astrophys. J. 572, 685.Google Scholar
  5. Frisch, U., Z. S. She, and P. L. Sulem: 1987. Physica 28D, 382.Google Scholar
  6. Getling, A. V. and P. N. Brandt: 2002. Astron. Astrophys. 382, L5.Google Scholar
  7. Gilman, P. A. and G. A. Glatzmaier: 1981. ApJS 45, 335.Google Scholar
  8. Gruzinov, A. V. and P. H. Diamond: 1994. Phys. Rev. Lett. 72, 1651.Google Scholar
  9. Howard, R. and J. Harvey: 1970. Solar Phys. 12, 23.Google Scholar
  10. Kitchatinov, L.L.: 2002. Astron. Astrophys. 394, 1135.Google Scholar
  11. Kitchatinov,IL. L. and M. V. Mazur: 2000. Solar Phys. 191, 325.Google Scholar
  12. Kitchatinov, L. L., V. V. Pipin, and G. Rüdiger: 1994. Astron. Nachr. 315, 157.Google Scholar
  13. Köhler, H.: 1973. Astron. Astrophys. 25, 467.Google Scholar
  14. Kosovichev, A. G.: 2002. Astron. Nachr. 323, 186.Google Scholar
  15. Krause, F. and K.-H. Rädler: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory. Berlin: Akademieverlag.zbMATHGoogle Scholar
  16. Krause, F. and G. Rüdiger: 1975. Solar Phys. 42, 107.Google Scholar
  17. Lites, B. W., A. Skumanich, and V. Martinez Pillet: 1998. Astron. Astrophys. 333, 1053.Google Scholar
  18. Makarov, V. I. and V. V. Makarova: 1986. J. Astrophys. Astron. 7, 113.Google Scholar
  19. Moffatt, H. K.: 1978, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge: Cambridge Univ. Press.Google Scholar
  20. Parker, E. N.: 1987. Solar Phys. 110, 11.Google Scholar
  21. Petrovay, K. and F. Moreno-Insertis: 1997. Astrophys. J. 485, 398.Google Scholar
  22. Petrovay, K. and L. van Driel-Gesztelyi: 1997. Solar Phys. 176, 249.ADSCrossRefGoogle Scholar
  23. Petrovay, K. and J. Zsargo: 1998. Monthly Notices Roy. Astron. Soc. 296, 245.Google Scholar
  24. Pipin, V. V.: 1994. Astron. Nachr. 315, 151.Google Scholar
  25. Rädler, K.-H.: 1969. Medien. Mber. dtsch. Akad. Wiss. Berlin 11, 194.Google Scholar
  26. Rüdiger, G.: 1989, Differential Rotation and Stellar Convection. Berlin: Akademieverlag.Google Scholar
  27. Rüdiger, G. and L. L. Kitchatinov: 2000. Astron. Nachr. 321, 75.Google Scholar
  28. Rüdiger, G. and F. Span: 1992. Solar Phys. 138, 1.Google Scholar
  29. Rüdiger, G. and V. Urpin: 2001. Astron. Astrophys. 369, 323.Google Scholar
  30. Schou, J., H. M. Antia, S. Basu, R. S. Bogart, R. I. Bush, S. M. Chitre, J. Christensen-Dalsgaard, M. P. di Mauro, W. A. Dziembowski, A. Eff-Darwich, D. O. Gough, D. A. Haber, J. T. Hoeksema, R. Howe, S. G. Korzennik, A. G. Kosovichev, R. M. Larsen, F. P. Pijpers, P. H. Sherrer, T. Sekii, T. D. Tarbell, A. M. Title, M. J. Thompson, and J. Toomre: 1998. Astrophys. J. 505, 390.Google Scholar
  31. Schumann, U.: 1976. J. Fluid Mech. 74, 31.Google Scholar
  32. Stenflo, J. O.: 1988. Astrophys. Space Sci. 144, 321.Google Scholar
  33. Stenflo, J. O. and M. Güdel: 1988. Astron. Astrophys. 191, 137.Google Scholar
  34. Stix, M.: 1976. Astron. Astrophys. 47, 243.Google Scholar
  35. Tuominen, I., A. Brandenburg, D. Moss, and M. Rieutord: 1994. Astron. Astrophys. 284, 259.Google Scholar
  36. Wilson, P. R., D. Burtonclay, and Y. Li: 1997. Astrophys. J. 489, 395.Google Scholar
  37. Yoshimura, H.: 1975. Astrophys. J. 201, 740.Google Scholar
  38. Zhao, J., A. G. Kosovichev, and T. L. Duvall: 2001. Astrophys. J. 557, 384.Google Scholar
  39. Zwaan, C.: 1992. ‘The evolution of sunspots’. In: J. H. Thomas and N. O. Weiss (eds.): Sunspots: Theory and Observations. Dordrecht, p. 75, Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. L. Kitchatinov
    • 1
  1. 1.Institute for Solar-Terrestrial PhysicsRussian FederationRussia

Personalised recommendations