Advertisement

A Dynamo in the Radiative Interior

  • H. C. Spruit
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 124)

Abstract

Magnetic fields can be created in the stably stratified layers below the convection zone of the Sun. A magnetic instability in the toroidal field (wound up by differential rotation) replaces the role of convection in closing the field amplification loop. Several different instabilities can play this role in principle, but Tayler instability is likely to be the most relevant one. A dynamo model is developed from these ingredients, and applied to the problem of angular momentum transport in the solar interior. It produces a predominantly horizontal field. This dynamo process is found to be much more effective in transporting angular momentum than the known hydrodynamic mechanisms, operating already at very low gradients in rotation rate. It might account for the observed pattern of rotation in the solar core.

Keywords

Rayleigh Number Rotation Rate Convection Zone Tayler Instability Radial Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, D.J. 1978, Phil Trans. Roy. Soc. Lond. A289, 459MathSciNetADSGoogle Scholar
  2. Balbus, S.A., & Hawley, J.F. 1991, Astrophys. J. 376, 214ADSCrossRefGoogle Scholar
  3. Caligari, P., Schüssler, M., & Moreno-Insertis F. 1998, Astrophys. J. 502, 481ADSCrossRefGoogle Scholar
  4. Chandrasekhar, S. 1960, Proc. Nat. Acad. Sci. 46, 253MathSciNetADSMATHCrossRefGoogle Scholar
  5. Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J., & Tomczyk, S. 1999, Astrophys. J. 527, 445ADSCrossRefGoogle Scholar
  6. D’Silva, S. & Choudhuri, A.R. 1993, A&A 272, 621ADSGoogle Scholar
  7. D’Silva S., & Howard, R.A. 1993, Sol. Phys. 148, 1ADSCrossRefGoogle Scholar
  8. Forgács-dajka, E. & Petrovay, K. 2001, Sol. Phys. 203, 195Google Scholar
  9. Goossens, M., Biront, D., & Tayler, R.J. 1981, Ap. Space Sci. 75, 521ADSCrossRefGoogle Scholar
  10. Hawley J.F., Gammie C.F., & Balbus, S.A. 1996, Astrophys. J. 464, 690ADSCrossRefGoogle Scholar
  11. Heger, A., Langer, N. & Woosley, S.E. 2000, Astrophys. J. 528, 368ADSCrossRefGoogle Scholar
  12. Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and evolution, Springer, HeidelbergGoogle Scholar
  13. Kumar, P., Talon, & S., Zahn, J.-P. 1999, Astrophys. J. 520, 859ADSCrossRefGoogle Scholar
  14. Leighton, R.B. 1969, Astrophys. J. 156, 1ADSCrossRefGoogle Scholar
  15. Maeder, A., & Zahn, J.-P. 1998, A&A 334, 1000ADSGoogle Scholar
  16. MacFadyen, A.I., Woosley, S.E., & Heger, A. 2001, Astrophys. J. 550, 410Google Scholar
  17. Markey, P., & Tayler, R.J. 1973, MNRAS 163, 77Google Scholar
  18. Markey, P., & Tayler, R.J. 1974, MNRAS 168, 505Google Scholar
  19. Mestel, L. 1953, MNRAS 113, 716 (remark on p. 735)Google Scholar
  20. Meynet, G.& Maeder, A. 2000, A&A 361, 101Google Scholar
  21. Parker, E.N. 1966, Astrophys. J. 145, 811ADSCrossRefGoogle Scholar
  22. Parker, E.N. 1979, Cosmical magnetic fields: Their origin and their activity, Oxford, Clarendon PressGoogle Scholar
  23. Pitts, E. & Tayler R.J. 1986, MNRAS 216, 139ADSGoogle Scholar
  24. Pizzo, V., Schwenn, R., Marsch, E., Rosenbauer, H., Mühlhäuser K.-H., & Neubauer, F.M. 1983, Astrophys. J. 271, 335ADSCrossRefGoogle Scholar
  25. Schou, J., Antia, H.M., & Basu, S., et al. 1998, Astrophys. J. 505, 390ADSCrossRefGoogle Scholar
  26. Spiegel, E.A., & Zahn, J.-P. 1992, A&A 265, 106ADSGoogle Scholar
  27. Spruit, H.C. 1998, A&A 333, 603ADSGoogle Scholar
  28. Spruit, H.C. 1999, A&A 349, 189ADSGoogle Scholar
  29. Spruit, H.C., & Phinney, E.S. 1998, Nature 393, 139ADSCrossRefGoogle Scholar
  30. Spruit, H.C., Knobloch, E., & Roxburgh, I.W. 1983, Nature 304, 520ADSCrossRefGoogle Scholar
  31. Spruit, H.C., 2002, A&A 381, 923ADSCrossRefGoogle Scholar
  32. Talon, S., & Zahn, J.-P., 1998, A&A 329, 315ADSGoogle Scholar
  33. Tayler, R.J. 1957, Proc. Phys. Soc. B 70, 311957Google Scholar
  34. Tayler, R.J. 1973, MNRAS 161, 365ADSGoogle Scholar
  35. Townsend, A.A. 1958, J. Fluid Mech. 4, 361MathSciNetADSMATHCrossRefGoogle Scholar
  36. Velikhov, E.P. 1959, J.Exp. Theoret. Phys. (USSR), 36, 1398Google Scholar
  37. Zahn, J.-P. 1974, in Stellar Instability and Evolution, eds. P. Ledoux et al., Reidel, Dordrecht, 185Google Scholar
  38. Zahn, J.-P. 1983, in Astrophysical Processes in upper Main Sequence Stars, eds. A.N. Cox et al., Geneva Observatory, Switzerland, 225Google Scholar
  39. Zahn, J.-P. 1992, A&A 265, 115ADSGoogle Scholar
  40. Zahn, J.-P., Talon S., & Matias, J. 1997, A&A 322, 320ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • H. C. Spruit
    • 1
  1. 1.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations