Skip to main content

The Photoreceptors and Visual Pigments of Sharks and Sturgeons

  • Chapter
The Senses of Fish

Abstract

With the exception of the stellate sturgeon, which has only cones, all acipenseriform species studied have a duplex retina. The retina is dominated by rods, but about 20% of the photoreceptors are cones. The rods are structurally similar to those of vertebrates in general. Most rods have outer segments that are broad and long, but at least one species has a very rare, very slender rod as well. Cones are also typical in structure, and they too are rather robust. With one exception, the inner segment of each cone houses a colorless oil droplet, the function of which is unknown. Packing density of both rods and cones is relatively low, indicating that both scotopic and photopic acuity is less than that of other nocturnal creatures. The visual pigment in the rods of all species studied has a peak absorbance near 540 nm. All species studied have multiple cone pigments and, therefore, the photoreceptor basis for wavelength discrimination. However, one cannot yet say whether or not any sturgeon or paddlefish has color vision. All visual pigments are based on the vitamin A2 chromophore, and there is no evidence that there is a shift to the vitamin A 1 chromophore with change of habitat or with age. At least one species does change its cone pigment complement with age. Larval white sturgeon up to 10 weeks of age have only green-sensitive cones; after 10 weeks, blue-sensitive and red-sensitive cones are also present.

Sharks also have a duplex retina with both rods and cones. The cone population varies from ca. 1 % in bottom dwelling species to ca. 20% in diurnal predators that feed near the surface. The rods are typical but much thinner than those of the acipenseriforms. Cones are also typical and are also relatively small. Peak absorbance of shark rod pigments varies from 472 nm to 502 nm and appears to be correlated with depth of habitat. No absorbance measurements have been made from shark cones, so the nature of the cone pigment or pigments is unknown. It is also not known if any species of shark has color vision. One species, the lemon shark, shifts its rod visual pigment from a vitamin A2 form in the juvenile to a vitamin A1 form in the adult, a shift correlated with a change in the spectral environment of the habitat. Otherwise, all shark visual pigments thus far studied are based on vitamin A1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayliss L.E., Lythgoe R.J., Tansley K. (1936) Some new forms of visual purple found in sea fishes with a note on the visual cells of origin, Proc. R. Soc. B 120: 95–113.

    Google Scholar 

  • Beatty D.D. (1969) Visual pigments of three species of cartilaginous fishes, Nature (Lond.) 222: 285.

    Article  CAS  Google Scholar 

  • Bemis W.E., Kynard B. (1997) Sturgeon rivers: an introduction to acipenseriform biogeography and life history, Environ. Biol. Fish. 48: 167–183.

    Article  Google Scholar 

  • Bowmaker J.K. (1990) Visual pigments of fishes, in: Douglas R.H., Djamgoz M.B.A. (Eds.), The Visual System, Chapman and Hall, New York, pp. 81–107.

    Chapter  Google Scholar 

  • Bridges C.D. (1965) The grouping of fish visual pigments about preferred positions in the spectrum, Vision Res. 5: 223–238.

    Article  CAS  Google Scholar 

  • Burkhardt D.A., Gottesman J., Levine J. S., MacNichol E. F. Jr. (1983) Cellular mechanisms for color-coding in holostean retinas and the evolution of color vision, Vision Res. 23: 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Castro J.I. (1983) The sharks of North American waters, Texas A&M University Press, College Station.

    Google Scholar 

  • Cohen J.L. (1990) Vision in elasmobranchs, in: Douglas R.H., Djamgoz B.A. (Eds.), The Visual System of Fish, Chapman and Hall, New York, pp. 465–490.

    Chapter  Google Scholar 

  • Cohen J.L., Hueter R.E., Organisciak D.T. (1990) The presence of a porphyropsin-based visual pigment in the juvenile lemon shark (Negaprion brevirostris), J. Exp. Zool. Suppl. 5: 76–84.

    Article  Google Scholar 

  • Compagno L.J.V., Ebert D.A., Smale M.J. (1989) Guide to the sharks and rays of southern Africa, New Holland, London.

    Google Scholar 

  • Cone R.A. (1963) Quantum relations of the rat electroretinogram, J. Gen. Physiol. 46: 1267–1286.

    Article  PubMed  CAS  Google Scholar 

  • Conte F.S., Doroshov S. I., Lutes, P.B., Strange E.M. (1988). Hatchery manual for the white sturgeon, Publication No. 3322, University of California Division of Agriculture and Natural Resources.

    Google Scholar 

  • Crescitelli F. (1991) Adaptations of visual pigments to the photic environment of the deep sea, J. Exp Biol. Suppl. 5: 66–75.

    Google Scholar 

  • Dartnall H.J.A. (1975) Assessing the fitness of visual pigments to their photic environments, in: Ali M. A. (Ed.), Vision in Fishes, Plenum Press, New York, pp. 543–563.

    Google Scholar 

  • Denton E, J., Nicol J.A.C. (1964) The choroidal tapeta of some cartilaginous fishes (chondrichthyes), J. Mar. Biol. Assoc. U.K. 44: 219–258.

    Article  Google Scholar 

  • Denton E.J., Shaw T.I. (1963) The visual pigments of some deep-sea elasmobranchs, J. Mar. Biol. Assoc. U.K. 43: 65–70.

    Article  Google Scholar 

  • Denton E.J., Wyllie J. H. (1955) Study of the photosensitive pigments in the pink and green rods of the frog, J. Physiol. (Lond) 127: 81–89.

    CAS  Google Scholar 

  • Govardovskii V.I., Röhlich P, Szél Á., Zueva L.V. (1991) Immunocytochemical reactivity of rod and cone visual pigments in the sturgeon retina, Vis. Neurosci. 8: 531–537.

    Article  Google Scholar 

  • Govardovskii V.I., Zueva L.V. (1987) Photoreceptors and visual pigments in sturgeons, J. Evol. Biochem. Physiol. 23: 685–686.

    Google Scholar 

  • Gruber S.H., Cohen J.L. (1985) Visual system of the white shark, Carcharodon carcharias, with emphasis on retinal structure, Mem. S. Cal. Acad. Sci. 9: 61–72.

    Google Scholar 

  • Gruber S.H., Gulley R.L., Brandon J. (1975) Duplex retina in seven elasmobranch species, Bull. Marine Sci. 25: 353–358.

    Google Scholar 

  • Gruber S.H., Hamasaki D.H., Bridges C.D.B. (1963) Cones in the retina of the lemon shark (Negaprion brevirostris), Vision Res. 3: 397–399.

    Article  Google Scholar 

  • Hisatomi O., Kayada S., Aoki Y., Iwasa T., Tokunaga F. (1994) Phylogenetic relationships among vertebrate visual pigments, Vision Res. 34: 3097–3102.

    Article  PubMed  CAS  Google Scholar 

  • Hueter R.E. (1991) Adaptations for spatial vision in sharks, J. Exp. Zool. Suppl. 5: 130–141.

    Google Scholar 

  • Ito H., Yoshimoto M., Albert J.S., Yamamoto N., Sawai N. (1999) Retinal projections and retinal ganglion cell distribution patterns in a sturgeon (Acipenser transmontanus), a non-teleost actinopterygian fish, Brain, Behav. Evol. 53: 127–141.

    Article  CAS  Google Scholar 

  • Johnson R.L., Grant K.B., Zankel T.C., Boehm M.E, Merbs S.L., Nathans J., Nakanishi K. (1993) Cloning and expression of goldfish opsin sequences, Biochemistry 32: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Kohbara J., Niwa H., Oguri M. (1987) Comparative light microscopic studies on the retina of some elasmobranch fishes. Nippon Suisan Gak. 53: 2117–2125.

    Article  Google Scholar 

  • Kolb H., Wang H.H. (1985) The distribution of photoreceptor, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossum (Didelphis virginiana), Vision Res. 25: 1207–1221.

    Article  PubMed  CAS  Google Scholar 

  • Lindberg J.D. (1988) Feeding preferences and behavior of larval and juvenile white sturgeon, Acipenser transmontanus, Ph.D. dissertation, University of California, Davis.

    Google Scholar 

  • Lineweaver T.H. III, Backus R.H. (1970) The natural history of sharks, Lippincott, Philadelphia.

    Google Scholar 

  • Loew E.R., Sillman A.J. (1993) Age-related changes in the visual pigments of the white sturgeon (Acipenser transmontanus), Can. J. Zool. 71: 1552–1557.

    Article  Google Scholar 

  • Loew E.R., Sillman A.J. (1998) An action spectrum for the light-dependent inhibition of swimming behavior in newly hatched white sturgeon, Acipenser transmontarais, Vision Res. 38: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe J.N. (1979) The ecology of vision, Clarendon Press, Oxford.

    Google Scholar 

  • Mayhew T.M., Astle D. (1997) Photoreceptor number and outer segment disk membrane surface area in the retina of the rat: stereological data for whole organ and average photoreceptor cell, J. Neurocytol. 26: 53–61.

    Article  PubMed  CAS  Google Scholar 

  • McCosker J.E. (1985) White shark attack behavior: observations of and speculations about predator and prey strategies, Mem. S. Cal. Acad. Sci. 9: 123–135.

    Google Scholar 

  • McFarland W. (1991) Light in the sea: the optical world of elasmobranchs, J. Exp. Zool. Suppl. 5: 3–12.

    Google Scholar 

  • Miyazaki T., Iwami T., Somiya H., Meyer-Rochow V.B. (2002) Retinal topography of ganglion cells and putative UV-sensitive cones in two Antarctic fishes: Pagothenia borchgrevinki and Trematomus beernacchii (Nototheniidae), Zool. Sci. 19: 1223–1229.

    Article  PubMed  Google Scholar 

  • Meyer-Rochow V.B., Coddington P.E. (2003) Eyes and vision of the New Zealand torrentfish Cheimarrichthys fosteri Von Haast (1874): histology, photochemistry and electrophysiology, in: Val A.L., Kapoor B.G., (Eds.), Fish Adapatations, Oxford and IBH Publ. & M/s Science Pubi, Enfield, New Hampshire & Plymouth, UK, pp. 339–383.

    Google Scholar 

  • Nathans J., Thomas D., Hogness D.S. (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments, Science 232: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Kojima D., Fukada Y., Shichida Y., Yoshizawa T. (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments, Proc. Nat. Acad. Sci. USA 89: 5932–5936.

    Article  PubMed  CAS  Google Scholar 

  • Ogden TE. (1975) The receptor mosaic of the Aotes trivirgatus: distribution of rods and cones, J. Comp. Neurol. 163: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Orlov O.Y. (1966) Color vision systems in vertebrates, Doctoral thesis, Moscow.

    Google Scholar 

  • Pizzolla P.F. (2002) Scyliorhinus canicula. Small-spotted catshark. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme [on-line]. Plymouth Marine Biological Association of the United Kingdom. Available from http://www.marlin.ac.uk.

    Google Scholar 

  • Russell T.R. (1986) Biology and life history of the paddlefish-a review, in: Dillard J.G., Graham L.K., Russell T.R. (Eds.), The Paddlefish: Status, Management and Propagation, Modern Litho-Print Co., Jefferson City, pp. 2–20.

    Google Scholar 

  • Sbikin Y.N. (1974) Age-related changes in the role of vision in the feeding of various fishes, J. Ichthyol (Engl. Transl. Vopr. Ikhtiol.) 14: 133–139.

    Google Scholar 

  • Schremser J.-L., Williams T. P. (1995) Rod outer segment renewal as a mechanism for adaptation to a new intensity environment. I. Rhodopsin levels and ROS length, Exp. Eye Res. 61: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Shubina T.N., Popova A.A., Vasil’ev V.P. (1989) Acipenser stellatus Pallas, 1771, in: Holcik J. (Ed.), The Freshwater Fishes of Europe. General Introduction to Fishes. Acipenseriformes, AULA-Verlag, Wiesbaden, pp. 395–443.

    Google Scholar 

  • Sillman A.J. (1987) Extraction and characterization of the blue-sensitive visual pigment of the toad Bufo marinus, Can. J. Zool. 65: 884–887.

    Article  CAS  Google Scholar 

  • Sillman A. J., Letsinger G.A., Patel S., Loew E.R., Klimley A.P. (1996) Visual pigments and photoreceptors in two species of shark, Triakis semifasciata and Mustelus henlei, J. Exp. Zool. 276: 1–10.

    Article  Google Scholar 

  • Sillman A.J., O’Leary C.J., Tarantino C.D., Loew E.R. (1999) The photoreceptors and visual pigments of two species of Acipenseriformes, the shovelnose sturgeon (Scaphirhynchus platorynchus) and the paddlefish (Polyodon spathula), J. Comp. Physiol. 184: 37–47.

    Article  Google Scholar 

  • Sillman A.J., Sorsky M.E., Loew E.R. (1995) The visual pigments of wild white sturgeon (Acipenser transmontarais), Can. J. Zool. 73: 805–809.

    Article  Google Scholar 

  • Sillman A. J., Spanfeiner M.D., Loew E.R. (1990) The photoreceptors and visual pigments in the retina of the white sturgeon, Acipenser transmontantes, Can. J. Zool. 68: 1544–1551.

    Article  Google Scholar 

  • Sokolov L.I., Vasil’ev V.P. (1989a) Acipenser baeri Brandt, 1869, in: Holcik J. (Ed.), The Freshwater Fishes of Europe. General Introduction to Fishes. Acipenseriformes, AULA-Verlag, Wiesbaden, pp. 263–284.

    Google Scholar 

  • Sokolov L.I., Vasil’ev V.P. (1989b) Acipenser ruthenus Linnaeus, 1758, in: Holcik J. (Ed.), The Freshwa-ter Fishes of Europe. General Introduction to Fishes. Acipenseriformes, AULA-Verlag, Wiesbaden, pp. 227–262.

    Google Scholar 

  • Steel R. (1985) Sharks of the world, Blandford Press, Poole.

    Google Scholar 

  • Steinberg R.H., Reid M., Lacy PL. (1973) The distribution of rods and cones in the retina of the cat (Felis domesticus), J. Comp. Neurol. 148: 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Walls, G.L. (1942) The vertebrate eye and its adaptive radiation, Cranbrook Press, Bloomfield Hills.

    Book  Google Scholar 

  • Whitmore A.V, Bowmaker J.K. (1989) Seasonal variation in cone sensitivity and short-wave absorbing visual pigments in the rudd Scardinius erythrophthalmus, J. Comp. Physiol. A 166: 103–115

    Article  Google Scholar 

  • Wilkens L.A., Russell D.F., Pei X., Gurgeons C. (1997) The paddlefish rostrum functions as an electrosensory antenna in plankton feeding, Proc. R. Soc. Lond. Ser. B 264: 1723–1729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sillman, A.J., Dahlin, D.A. (2004). The Photoreceptors and Visual Pigments of Sharks and Sturgeons. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics