Skip to main content

Ecological Functions and Adaptations of the Elasmobranch Electrosense

  • Chapter
Book cover The Senses of Fish

Abstract

Sharks and rays have a long evolutionary history as major predators in marine ecosystems, but the biological functions and selective pressures that shape the evolution of their ampullary electrosensory system are poorly known. The ampulla of Lorenzini is the functional electrosensory unit that consists of a small subdermal ampulla and a canal that projects to a surface pore on the head or pectoral fins. The sensory epithelium of the ampulla wall detects differences between the potential at the skin pore and internal potential of the animal, and stimulates neural transmission of information about the physical features of an external field to the brain. Natural weak electric stimuli include polar fields from bioelectric sources and induced fields from physical sources in the environment. Neurophysiological studies show that the ampullary electrosense responds to electric field gradients as low as 20 nV/cm, and behav- ioral studies show responses to gradients of 1-5 nV/cm. Elasmobranch fishes show behavioral responses to bioelectric stimuli produced by natural prey, mates, consexuals and potential predators. Numerous models exist for electrosensory navigation, but they remain to be rigorously tested. Recent work shows age-dependent changes in the response properties of the electrosense among embryo, juvenile and adult stages and are proposed to reflect ontogenetic adaptations to their changing environments. In addition, the electrosense response properties are seasonally modified by the periodic expression of gonadal steroids and may serve important modulation of sensory function during reproductive behaviors. Future work should continue to investigate different biological contexts in which the electrosense is used by elasmobranch fishes, and to test the selective forces that may have shaped the evolution of this remark- able sensory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrianov G.N., Broun G.R., Ilyinsky O.B., Muraveiko V.M. (1984) Frequency characteristics of skate electroreceptive central neurons responding to electric and magnetic stimulation, Neurophysiology 16: 365–376.

    Google Scholar 

  • Arnold A.E, Gorski R.A. (1984) Gonadal steroid induction of structural sex differences in the central nervous system, Annual Rev. Neuroci. 7: 413–442.

    Article  CAS  Google Scholar 

  • Bennett, M.V.L, Clussin W.T. (1977) Physiology of the ampulla of Lorenzini, the electroreceptor of elasmobranchs, in: Sensory biology of sharks, skates and rays, Hodgson E.S., Mathewson R.R. (Eds.) Office of Naval Research, Arlington, Virginia, pp. 483–506.

    Google Scholar 

  • Blonder B.I., Alevizon W.S. (1988) Prey discrimination and electroreception in the stingray Dasyatis sabina, Copeia 1988: 33–36.

    Article  Google Scholar 

  • Bratton B.O., Ayers J.L. (1987) Observations on the electric discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behavior, Environ. Biol. Fishes 20: 241–254.

    Google Scholar 

  • Bullock T.H., Heligenberg W. (1986) Electroreception, John Wiley and Sons, New York.

    Google Scholar 

  • Cox D.L., Koob T.J. (1993) Prédation on elasmobranch eggs, Environ. Biol. Fishes 38: 117–125.

    Article  Google Scholar 

  • Haine O.S., Ridd P.V., Rowe R.J. (2001) Range of electrosensory detection of prey by Carcharhinus melanopterus and Himantura granulata, Mar. Freswater Res. 52: 291–296.

    Article  Google Scholar 

  • Kajiura S.M., Holland K.N. (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks, J. Exp. Biol. 205: 3609–3621.

    PubMed  Google Scholar 

  • Kajiura S.M., Sebastian, A., Tricas T.C. (2000) Dermal bite wounds as indicators of reproductive seasonality and behaviour in the Atlantic stingray, Dasyatis sabina, Environ. Biol. Fishes: 58: 23–31.

    Article  Google Scholar 

  • Kalmijn A.J. (1971) The electric sense of sharks and rays, J. Exp. Biol. 55: 371–383.

    PubMed  CAS  Google Scholar 

  • Kalmijn A.J. (1974) The detection of electric fields from inanimate and animate sources other than electric organs, in: Handbook of Sensory Physiology (Vol. 3), Fessard A. (Ed.) Springer-Verlag, New York, pp. 147–200.

    Google Scholar 

  • Kalmijn A.J. (1981) Biophysics of geomagnetic field detection, IEEE Trans. Magnetics MAG 17: 1113–1124.

    Article  Google Scholar 

  • Kalmijn A.J. (1982) Electric and magnetic field detection in elasmobranch fishes, Science 218: 916–918.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn A.J. (1984) Theory of electromagnetic orientation: a further analysis, in: Comparative Physiology of Sensory Systems, Bolis A., Keynes R.D., Madrell S.H.P. (Eds.) Cambridge University Press, Cambridge, pp. 525–559.

    Google Scholar 

  • Kalmijn A.J. (1988) Detection of weak electric fields, in: Sensory Biology of Aquatic Animals. Atema J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Springer-Verlag, New York, pp. 151–186.

    Chapter  Google Scholar 

  • Kelly M.J. (1982) Electrical effects of steroids in neurons, in: Hormonally active brain peptides, McKerns K.W., Pantic B. (Eds.) Plenum Press, New York, pp. 253–265.

    Chapter  Google Scholar 

  • Klimley A.P. (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna leweni and subsurface irradiance, temperature, bathymetry, and geomagnetic field, Mar. Biol. 117: 1–22.

    Article  Google Scholar 

  • Lowe C.G., Bray R.N., Nelson D.R. (1994) Feeding and associated electrical behavior of the Pacific electric ray Torpedo californica in the field, Mar. Biol. 120: 161–169.

    Google Scholar 

  • Luer C.A., Gilbert PW. (1985) Mating behavior, egg deposition, incubation period, and hatching in the clearnose skate, Raja eglanteria, Environ. Biol. Fishes 13: 161–171.

    Article  Google Scholar 

  • Maruska K.P, Cowie E.G., Tricas T.C. (1996) Periodic gonadal activity and protracted mating in elasmobranch fishes, J. Exp. Zool. 276: 219–232.

    Article  Google Scholar 

  • Mikhailenko N.A. (1971) Biological significance and dynamics of electrical discharges in weak electric fishes of the Black Sea (in Russian), Zool. Zh. 50: 1347–1352.

    Google Scholar 

  • Montgomery J.C. (1984) Frequency response characteristics of primary and secondary neurons in the electrosensory neurons in the electrosensory system of the thornback ray, Comp. Biochem. Physiol. 79A: 189–195.

    Article  Google Scholar 

  • Montgomery J.C, Bodznick D. (1993) Hindbrain circuitry mediating common-mode suppression of ventilatory reafference in the electrosensory system of the little skate, Raja erinacea, J. Exp. Biol. 183: 203–315.

    Google Scholar 

  • Mortenson J., Whitaker R.H. (1973) Electrical discharges in free swimming female winter skates (Raja ocellata), Am Zool. 13: 1266.

    Google Scholar 

  • Murray R.W., Potts T.W. (1961) The composition of the endolymph and other fluids of elasmobranchs, Comp. Biochem. Physio. 2: 65–75.

    Article  CAS  Google Scholar 

  • Murray R.W. (1962) The response of the ampullae of Lorenzini in elasmobranchs to electrical stimulation, J. Exp. Biol. 39: 119–128.

    PubMed  CAS  Google Scholar 

  • New J.G. (1990) Medullary electrosensory processing in the little skate. I. Response characteristics of neurons in the dorsal octavolateralis nucleus, J. Comp. Physiol. A 167: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • New J.G. (1994) Electric organ discharge and electrosensory reafference in skates, Biol. Bull. 187: 64–75.

    Article  PubMed  CAS  Google Scholar 

  • New J.G., Tricas T.C. (1998) Electroreceptors and Magnetoreceptors: Morphology and Function, in: Cell Physiology Source Book, Sperlakis N. (Ed.) 2nd ed., Academic Press, San Diego, pp. 741–758.

    Google Scholar 

  • Obara S., Benett M.V.L. (1972) Mode of operation of ampullae of Lorenzini of the skate, Raja, J. Gen. Physiol. 60: 534–557.

    Article  PubMed  CAS  Google Scholar 

  • Pals N., Valentijn P., Verwey D. (1982a) Orientation reactions of the dogfish, Scyliorhinus canicula, to local electric fields, Neth. J. Zool. 32: 495–512.

    Article  Google Scholar 

  • Pals N., Peters R.C., Schoenhage A.A.C. (1982b) Local geo-electric fields at the bottom of the sea and their relevance for electrosensitive fish, Neth. J. Zool. 32: 479–494.

    Google Scholar 

  • Paulin M.G. (1995) Electroreception and the compass sense of sharks, J. Theor. Biol. 174: 325–339.

    Article  Google Scholar 

  • Peters R.C., Evers H.P. (1985) Frequency selectivity in the ampullary system of an elasmobranch fish (Scyliorhinus canicula), J. Exp. Biol. 118: 99–109.

    Google Scholar 

  • Raschi W. (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei), J. Morph. 189: 225–247.

    Article  Google Scholar 

  • Roberts B.L., Meredith G.E. (1989) The efferent system, in: The Mechanosensory Lateral Line, Coombs S., Görner P., Münz H., (Eds.) Springer-Verlag, New York, pp. 445–459.

    Chapter  Google Scholar 

  • Sisneros J.A., Tricas T.C. (2000) Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons, J. Neurosci. 20: 8586–8595.

    PubMed  CAS  Google Scholar 

  • Sisneros J.A., Tricas T.C. (2002a) Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina), Brain, Behav. Evol. 59: 130–140.

    Article  Google Scholar 

  • Sisneros J.A., Tricas T.C. (2002b) Neuroethology and life history adaptations of the elasmobranch electric sense, J. Physiol. (Paris), 96: 379–389.

    Article  CAS  Google Scholar 

  • Sisneros J.A., Tricas T.C., Luer C.A. (1998) Response properties and biological function of the skate electrosensory system during ontogeny, J. Comp. Physiol. A 183: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Tricas T.C. (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum, Copeia 1982: 948–952.

    Article  Google Scholar 

  • Tricas T.C. (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior, Environ. Biol. Fishes 60: 77–92.

    Article  Google Scholar 

  • Tricas T.C., New J.G. (1998) Sensitivity and response dynamics of electrosensory primary afferent neurons to near threshold fields in the round stingray, J. Comp. Physiol. A 182: 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Tricas T.C., Maruska K.P, Rasmussen L.E.L. (2000) Annual cycles of steroid hormone production, gonad development, and reproductive behavior in the Atlantic stingray, Gen. Comp. Endocrinol. 118: 209–225.

    Article  PubMed  CAS  Google Scholar 

  • Tricas T.C., Michael S.W., Sisneros J.A. (1995) Electrosensory optimization to conspecific phasic signals for mating, Neurosci. Lett. 202: 29–131.

    Article  Google Scholar 

  • Waltman B. (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini, Acta Physiol. Scand. 66, Suppl. 264: 1–60.

    Google Scholar 

  • Wilkens L.A., Russell D.F., Pei, X., Gurgens C. (1997) The paddlefish rostrum functions as an electrosensory antenna in plankton feeding, Proc. R. Soc. Lond. B Biol. Sci. 264: 1723–1729.

    Article  Google Scholar 

  • Zakon H.H.(1988) The electroreceptors: diversity in structure and function, in: Sensory Biology of Aquatic Animals, Atema, J., Fay R.R., Popper A.N., Tavolga W.N. (Eds.) Springer-Verlag, New York, pp. 151–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tricas, T.C., Sisneros, J.A. (2004). Ecological Functions and Adaptations of the Elasmobranch Electrosense. In: von der Emde, G., Mogdans, J., Kapoor, B.G. (eds) The Senses of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1060-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1060-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3779-2

  • Online ISBN: 978-94-007-1060-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics