Advertisement

Advances in String Theory in Curved Backgrounds: A Synthesis Report

  • Norma. G. Sanchez
Conference paper
Part of the NATO Science Series book series (NAII, volume 130)

Abstract

A synthetic report of the advances in the study of classical and quantum string dynamics in curved backgrounds is provided, namely : the new feature of Multistring solutions ; the mass spectrum of Strings in Curved backgrounds; The effect of a Cosmological Constant and of Spacial Curvature on Classical and Quantum Strings; Classical splitting of Fundamental Strings; The General String Evolution in constant Curvature Spacetimes; The Conformal Invariance Effects; Strings on plane fronted and gravitational shock waves, string falling on spacetime singularities and its spectrum.

New Developments in String Gravity and String Cosmology are reported : String driven cosmology and its Predictions; The primordial gravitational wave background; Non-singular string cosmologies from Exact Conformal Field Theories; Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time; Hawking Radiation in String Theory and the String Phase of Black Holes; New Dual Relation between Quantum Field Theory regime and String regime and the “QFT/String Tango”; New Coherent String States and Minimal Uncertainty Principle in string theory.

Keywords

Black Hole String Solution Classical String Spacetime Singularity Quantum String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.J. de Vega and N. Sanchez, Phys. Lett. B 197, 320 (1987).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    F. Combes, H.J. de Vega, A.V. Mikhailov and N. Sanchez, “Multistring Solutions by Soliton Methods in de Sitter Spacetime” Phys. Rev D50 2754 (1994).ADSGoogle Scholar
  3. [3]
    H.J. de Vega, A.V. Mikhailov and N. Sanchez, Teor. Mat. Fiz. 94, 232 (1993).CrossRefGoogle Scholar
  4. [4]
    H.J. de Vega and N. Sanchez, “Exact integrability of strings in D-dimensional de Sitter spacetime” Phys. Rev D 47, 3394 (1993).Google Scholar
  5. [5]
    H.J. de Vega, A. Larsen and N. Sanchez,’ Infinitely many strings in de Sitter spacetime; Expanding and oscillating elliptic funtion solutions”, Nucl. Phys. B427, 643 (1994).ADSCrossRefGoogle Scholar
  6. [6]
    H.J. de Vega and N. Sanchez, “Back reaction of strings in Selfconsistent String Cosmology”, Phys. Rev. D50, 2623 (1994).Google Scholar
  7. [7]
    A. Larsen and N. Sanchez,’ New Classes of Exact Multi-String Solutions in Curved Spacetimes”, Phys. Rev. D51, 6929 (1995).MathSciNetADSGoogle Scholar
  8. [8]
    A. Larsen and N. Sanchez, “Strings propagating in the 2+1 Black hole-AdS spacetime”, Phys. Rev. D50, 7493 (1994).MathSciNetADSGoogle Scholar
  9. [9]
    A. Larsen and N. Sanchez, “Mass Spectrum of Strings in Anti de Sitter Spacetime”, Phys. Rev. D52, 1051 (1995).MathSciNetADSGoogle Scholar
  10. [10]
    A. Larsen and N. Sanchez, “The Effect of Spatial Curvature on the Classical and Quantum Strings”, IJMPAll, No.21, 4005 (1996).MathSciNetADSGoogle Scholar
  11. [11]
    H.J. de Vega, A. Larsen and N. Sanchez, “Semiclassical Quantization of Circular Strings in de Sitter and Anti de Sitter spacetimes”, Phys. Rev. D51, 6917 (1995).ADSGoogle Scholar
  12. [12]
    H.J. de Vega, J. Ramirez Mittelbrün n, M. Ramon Medrano and N. Sanchez, “Classical Splitting of Fundamental Strings”, Phys. Rev. D52, 4609 (1995).ADSGoogle Scholar
  13. [13]
    A. Larsen and N. Sanchez, “Sinh-Gordon, Cosh-Gordon and Liouville Equations for Strings and Multistrings in Constant Curvature Space-times”, Phys. Rev. D54, 2801 (1996).MathSciNetADSGoogle Scholar
  14. [14]
    H.J. de Vega, A. Larsen and N. Sanchez, “Quantum string dynamics in the conformai invariant SL(2, R) WZWN background: Anti-de Sitter space torsion”, Phys. Rev. D58, 026001 (1998).ADSGoogle Scholar
  15. [15]
    A. Larsen and N. Sanchez, “From the WZWN model to the Liouville equation: Exact string dynamics in a conformally invariant AdS background”, Phys. Rev. D58, 126002 (1998).MathSciNetADSGoogle Scholar
  16. [16]
    M.R Infante and N. Sanchez, “The Primordial Gravitational Wave Background in String Cosmology” Phys Rev D 61, 083515 (2000).ADSCrossRefGoogle Scholar
  17. [17]
    N. Sanchez, “String Driven Cosmology and its Predictions” In the 8th Course of the Chalonge School, NATO ASI, Kluwer Pub. vol 40, pp 81–102, (2001).Google Scholar
  18. [18]
    H.J. de Vega, A.L. Larsen and N. Sanchez, “Non-Singular String Cosmologies from Exact Conformai Field Theories” Phys Rev D 61 066003 (2000).Google Scholar
  19. [19]
    A.L. Larsen and N. Sanchez, “Quantum Coherent States in AdS and SL (2, R) WZWN Model” Phys Rev D 62, 046003 (2000).MathSciNetGoogle Scholar
  20. [20]
    M. Ramon Medrano and N. Sanchez, “Hawking Temperature, String Temperature and the String Phase of de Sitter Space-time” Phys Rev D 60, 125014 (1999).MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Ramon Medrano and N. Sanchez, “Hawking Radiation in String Theory and the String Phase of Black Holes” Phys Rev D 61, 084030 (2000).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Ramon Medrano and N. Sanchez, “New Dual Relations between Quantum Field Theory and String Regimes in Curved Backgrounds”, in the 7th Course of the Chalonge School, NATO ASI, Khrwer Pub., vol 562C, pp 121–130 (2001).Google Scholar
  23. [23]
    A.L. Larsen and N. Sanchez, “New Coherent String States and Minimal Uncertainty in WZWN Models”, Nucl, Phys. B618, 301 (2001).MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    H.J. de Vega and N. Sanchez, “String falling into spacetime singularities” Phys. Rev. D45, 2784, (1992)Google Scholar
  25. [25]
    H.J. de Vega and N. Sanchez, ”Quantum string scattering in the Aichelburg-Sexl geometry”, Nucl. Phys. B317, 706 (1989)Google Scholar
  26. [26]
    H.J. de Vega and N. Sanchez, ”Particle Scattering at the Planck scale and the Aichelburg-Sexl geometry”, Nucl. Phys. B317, 731 (1989)ADSCrossRefGoogle Scholar
  27. [27]
    H.J. de Vega and N. Sanchez, ”Quantum string dynamics in black hole spacetimes”, Nucl. Phys. B309, 552 (1989); B309, 577 (1989)Google Scholar
  28. [28]
    H.J. de Vega and N. Sanchez, ”Mass and Energy Momentum Tensor of quantum strings in gravitational shock-waves”, IJMPA7, n° 13, 3043 (1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Norma. G. Sanchez
    • 1
  1. 1.LERMAObservatoire de ParisParisFrance

Personalised recommendations