Nitric-oxide-mediated vasodilation and portal hypertension

  • R. Wiest
Conference paper


Chronic portal hypertension is associated with reduced splanchnic vascular arteriolar resistance and increased portal venous inflow. This hyperdynamic splanchnic circulatory state is accompanied by a hyperdynamic systemic circulation characterized by a low systemic vascular resistance with decreased arterial pressure and an increased cardiac output/index and regional organ blood flow 1. Arterial vasodilation represents the initiating mechanism and hence, pathophysiological hallmark, in the development of this hyperdynamic circulation. It occurs early and most predominantly in the splanchnic circulation. Vasodilation can be considered an expression of anatomical (portal-systemic collaterals) or functional (liver cell necrosis/intrahepatic shunts) liver failure, or both. Thus, it is not surprising to find the extent of vasodilation being an excellent prognostic indicator in cirrhotic patients 2.


Nitric Oxide Portal Hypertension Cirrhotic Patient Portal Vein Ligation Arterial Vasodilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Groszmann RJ. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology. 1994;20:1359–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Llach J, Gines P, Arroyo V et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology. 1988;94:482–7.PubMedGoogle Scholar
  3. 3.
    Sessa WC. The nitric oxide synthase family of proteins. J Vasc Res. 1994;31:131–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Ignacio CS, Curling PE, Childres WF, Bryan RM Jr. Nitric oxide-synthesizing perivascular nerves in the rat middle cerebral artery. Am J Physiol. 1997;273:R661–8.Google Scholar
  5. 5.
    Toda N, Ayajiki K, Uchiyama M, Okamura T. Nitric oxide-mediated neurogenic vasodilation in isolated monkey lingual arteries. Am J Physiol. 1997;272:H1582–8.Google Scholar
  6. 6.
    Toda N, Okamura T. Regulation of arterial tone by nitroxidergic nerves. News in Physiol Sci. 1991;7:148–52.Google Scholar
  7. 7.
    Hattori Y, Oka M, Kasai K, Nakanishi N, Shimoda S. Lipopolysaccharide treatment in vivo induces tissue expression of GTP cyclohydrolase I mRNA. FEBS Lett. 1995;368:336–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Katusic ZS, Stelter A, Milstien S. Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol. 1998; 18:27–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Pizcueta P, Pique JM, Fernandez M et al. Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology. 1992;103:1909–15.PubMedGoogle Scholar
  10. 10.
    Pizcueta MP, Pique JM, Bosch J, Whittle BJ, Moncada S. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol. 1992;105:184–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Casadevall M, Pique JM, Cirera I et al. Increased blood hemoglobin attenuates splanchnic vasodilation in portal-hypertensive rats by nitric oxide inactivation. Gastroenterology. 1996;110:1156–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Niederberger M, Martin PY, Gines P et al. Normalization of nitric oxide production corrects arterial vasodilation and hyperdynamic circulation in cirrhotic rats. Gastroenterology. 1995;109:1624–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Sieber CC, Groszmann RJ. In vitro hyporeactivity to methoxamine in portal hypertensive rats: reversal by nitric oxide blockade. Am J Physiol. 1992;262:G996–1001.Google Scholar
  14. 14.
    Kiel JW, Pitts V, Benoit JN, Granger DN, Shepherd AP. Reduced vascular sensitivity to norepinephrine in portal-hypertensive rats. Am J Physiol. 1985;248:G192–5.Google Scholar
  15. 15.
    Hartleb M, Moreau R, Cailmail S, Gaudin C, Lebrec D. Vascular hyporesponsiveness to endothelin 1 in rats with cirrhosis [see comments]. Gastroenterology. 1994;107:1085–93.PubMedGoogle Scholar
  16. 16.
    Sieber CC, Groszmann RJ. Nitric oxide mediates hypo reactivity to vasopressors in mesenteric vessels of portal hypertensive rats. Gastroenterology. 1992;103:235–9.PubMedGoogle Scholar
  17. 17.
    Sieber CC, Sumanovski LT, Moll-Kaufmann C, Stalder GA. Hyposensitivity to nerve stimulation in portal hypertensive rats: role of nitric oxide. Eur J Clin Invest. 1997;27:902–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Weigert AL, Martin PY, Niederberger M et al. Endothelium-dependent vascular hypore-sponsiveness without detection of nitric oxide synthase induction in aortas of cirrhotic rats. Hepatology. 1995;22:1856–62.PubMedGoogle Scholar
  19. 19.
    Sieber CC, Lopez-Talavera JC, Groszmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hypo reactivity in ascitic cirrhotic rats. Gastroenterology. 1993;104:1750–4.PubMedGoogle Scholar
  20. 20.
    Castro A, Jimenez W, Claria J et al. Impaired responsiveness to angiotensin II in experimental cirrhosis: role of nitric oxide [see comments]. Hepatology. 1993;18:367–72.PubMedGoogle Scholar
  21. 21.
    Claria J, Jimenez W, Ros J et al. Pathogenesis of arterial hypotension in cirrhotic rats with ascites: role of endogenous nitric oxide. Hepatology. 1992;15:343–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee FY, Colombato LA, Albillos A, Groszmann RJ. Administration of N omega-nitro-L-arginine ameliorates portal-systemic shunting in portal-hypertensive rats. Gastroenterology. 1993;105:1464–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Mosca P, Lee FY, Kaumann AJ, Groszmann RJ. Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium. Am J Physiol. 1992;263:G544–50.Google Scholar
  24. 24.
    Atucha NM, Shah V, Garcia-Cardena G, Sessa WE, Groszmann RJ. Role of endothelium in the abnormal response of mesenteric vessels in rats with portal hypertension and liver cirrhosis. Gastroenterology. 1996; 111: 1627–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Martin PY, Xu DL, Niederberger M et al. Up-regulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996;270:F494–9.Google Scholar
  26. 26.
    Morales-Ruiz M, Jimenez W, Perez-Sala D et at. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 1996;24:1481–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Wiest R, Garcia-Tsao G, Cadelina G, Das S, Shah V, Groszmann RJ. Bacterial translocation to mesenteric lymph nodes enhances eNOS-derived NO overproduction in mesenteric vasculature of cirrhotic rats: role for impairment in vascular contractility. J Clin Invest. 1999;104:1223–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology. 1995;22:598–606.PubMedGoogle Scholar
  29. 29.
    Cahill PA, Redmond EM, Hodges R, Zhang S, Sitzmann IV. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol. 1996;25:370–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Gadano AC, Sogni P, Yang S et al. Endothelial calcium-calmodulin dependent nitric oxide synthase in the in vitro vascular hyporeactivity of portal hypertensive rats. J Hepatol. 1997;26:678–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Niederberger M, Gines P, Martin PY et al. Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats. Hepatology. 1996;24:947–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Claria J, Jimenez W, Ros J et al. Increased nitric oxide-dependent vasorelaxation in aortic rings of cirrhotic rats with ascites [see comments]. Hepatology. 1994;20:1615–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Hori N, Groszmann RJ. Direct evidence for increased functional activity of eNOS in superior mesenteric arterial beds of portal hypertensive rats. Hepatology. 1996;24:A 749.Google Scholar
  34. 34.
    Shah V, Wiest R, Garcia-Cardena G, Sessa WC, Groszmann R. HSP 90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol. 1999;277:G463–8.Google Scholar
  35. 35.
    Wiest R, Hori N, Cadelina G, Das S, Groszmann RJ. Increased nitric oxide release in response to vasoconstrictors in the superior mesenteric arterial bed of cirrhotic rats. Hepatology. 1997;26:A390.Google Scholar
  36. 36.
    Moll-Kaufmann C, Sumanovski LT, Sieber CC. Neurally-mediated vasodilation in normal and portal hypertensive rats: role of nitric oxide and calcitonin gene-related peptide. J Hepatol. 1998;28: 1031–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Xu L, Carter EP, Ohara M et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol. 2000;279:F1110–15.Google Scholar
  38. 38.
    Fernandez M, Garcia-Pagan JC, Casadevall M et al. Evidence against a role for inducible nitric oxide synthase in the hyperdynamic circulation of portal-hypertensive rats. Gastroenterology. 1995;108:1487–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Heinemann A, Stauber RE. The role of inducible nitric oxide synthase in vascular hyporeactivity of endotoxin-treated and portal hypertensive rats. Eur J Pharmacol. 1995;278:87–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Niederberger M, Gines P, Tsai P et al. Increased aortic cyclic guanosine mono phosphate concentration in experimental cirrhosis in rats: evidence for a role of nitric oxide in the pathogenesis of arterial vasodilation in cirrhosis. Hepatology. 1995;21:1625–31.PubMedGoogle Scholar
  41. 41.
    Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999; 276:G1043–51.Google Scholar
  42. 42.
    Colombato LA, Albillos A, Groszmann RJ. Temporal relationship of peripheral vasodilation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats. Hepatology. 1992;15:323–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann R. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Chu CJ, Lee FY, Wang SS et al. Splanchnic endotoxin levels in cirrhotic rats induced by carbon tetrachloride. Chung Hua I Hsueh Tsa Chih. 2000;63:196–204.PubMedGoogle Scholar
  45. 45.
    Guarner C, Soriano G, Tomas A et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993;18:1139–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995;108:761–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Bhagat K, Hingorani AD, Palacios M, Charles IG, Vallance P. Cytokine-induced venodilation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc Res. 1999;41:754–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Lopez-Talavera JC, Cadelina G, Olchowski J, Merrill W, Groszmann RJ. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996; 23: 1616–21.PubMedGoogle Scholar
  49. 49.
    Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest. 1999;104:1223–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Fernandez-Rodriguez CM, Prieto J, Quiroga J et al. Plasma levels of substance P in liver cirrhosis: relationship to the activation of vasopressor systems and urinary sodium excretion. Hepatology. 1995;21:35–40.PubMedCrossRefGoogle Scholar
  51. 51.
    John Judy S, Ding-Liu X. Effect of circulating substances known to be increased in cirrhosis on endothelial nitric oxide synthase (eNOS) mRNA. J Am Soc Nephrol. 1996;7:A1619.Google Scholar
  52. 52.
    Albillos A, Rossi I, Cacho G et al. Enhanced endothelium-dependent vasodilation in patients with cirrhosis. Am J Physiol. 1995;268:G459–64.Google Scholar
  53. 53.
    Battista S, Bar F, Mengozzo G, Zanon E, Grosso M, Molino G. Hyperdynamic circulation in patients with cirrhosis: direct measurement of nitric oxide levels in hepatic and portal veins. J Hepatol. 1997;26:75–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Arkenau HT, Stichtenoth DO, Frolich JC, Manns MP, Boker KH. Elevated nitric oxide levels in patients with chronic liver disease and cirrhosis correlate with disease stage and parameters of hyperdynamic circulation. Z Gastroenterol. 2002;40:907–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Genesca J, Segura R, Gonzalez A et al. Nitric oxide may contribute to nocturnal hemodynamic changes in cirrhotic patients. Am J Gastroenterol. 2000;95:1539–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Heller J, Kristeleit H, Brensing KA, Woitas R, Spengler U, Sauerbruch T. Nitrite and nitrate levels in patients with cirrhosis of the liver: influence of kidney function and fasting state. Scand J Gastroenterol. 1999;34:297–302.PubMedCrossRefGoogle Scholar
  57. 57.
    Sansoe G, Silvano S, Mengozzo G et al. Systemic nitric oxide production and renal function in nonazotemic human cirrhosis: a reappraisal. Am J Gastroenterol. 2002;97:2383–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Shijo H, Yokoyama M, Ota K et al. Nitrate kinetics in patients with compensated cirrhosis: correlation with hemodynamics. Am J Gastroenterol. 1996:91:2190–4.PubMedGoogle Scholar
  59. 59.
    Sarela AI, Mihaimeed FMA, Batten JJ, Davidson BR, Mathie RT. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut. 1999;44:749–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Campillo B, Bories PN, Benvenuti C, Dupeyron C. Serum and urinary nitrate levels in liver cirrhosis: endotoxemia, renal function and hyperdynamic circulation. J Hepatol. 1996; 25:707–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Criado-limenez M, Rivas-Cabanero L, Martin-Oterino JA, Lopez-Novoa JM, Sanchez-Rodriguez A. Nitric oxide production by mononuclear leukocytes in alcoholic cirrhosis. J Mol Med. 1995;73:31–3.Google Scholar
  62. 62.
    Laffi G, Foschi M, Masini E et al. Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology. 1995;22:1666–73.PubMedGoogle Scholar
  63. 63.
    Campillo B, Chabrier PE, Pelle G et al. Inhibition of nitric oxide synthesis in the forearm arterial bed of patients with advanced cirrhosis. Hepatology. 1995;22:1423–9.PubMedGoogle Scholar
  64. 64.
    Calver A, Harris A, Maxwell JD, Vallance P. Effect of local inhibition of nitric oxide synthesis on forearm blood flow and dorsal hand vein size in patients with aleoholic cirrhosis. Clin Sci (Coleh.). 1994;86:203–8.Google Scholar
  65. 65.
    Albornoz L, Motta M, Alvarez E et al. Nitric oxide synthase activity in the splanchnic vasculature of patients with cirrhosis: relationship with hemodynamic disturbances. J Hepatol. 2001;35:452–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Forrest EH, Jones AL, Dillon JF, Walker J, Hayes PC. The effect of nitric oxide synthase inhibition on portal pressure and azygos blood flow in patients with cirrhosis. J Hepatol. 1995;23:254–8.PubMedCrossRefGoogle Scholar
  67. 67.
    La Villa G, Barletta G, Pantaleo P et al. Hemodynamic, renal and endocrine effects of acute inhibition of nitric oxide synthase in compensated cirrhosis. Hepatol. 2001;34:19–27.CrossRefGoogle Scholar
  68. 68.
    Spahr L, Martin P, Niederberger M, Lang U, Capponi A, Hadengue A. Acute effects of nitric oxide synthase inhibition on systemic, hepatic, and renal hemodynamics in patients with cirrhosis and ascites. J Invest Med. 2002;50:116–24.CrossRefGoogle Scholar
  69. 69.
    Thiesson HC, Skott O, Jespersen B, Schaffalitzky de Muckadell OB. Nitric oxide synthase inhibition does not improve renal function in cirrhotic patients with ascites. Am J Gastroenterol. 2003;98: 180–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Pilette C, Moreau R, Sogni P et al. Haemodynamic and hormonal responses to long-term inhibition of nitric oxide synthesis in rats with portal hypertension. Eur J Pharmacol. 1996;312:63–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2001;35:478–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • R. Wiest
    • 1
  1. 1.Department of Internal Medicine IUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations