The paradox: vasoconstriction and vasodilation

  • Yasuko Iwakiri
  • Roberto J. Groszmann

Abstract

One of the most typical characteristics observed in patients with chronic liver diseases is the progressive alteration of the body’s homeostatic mechanisms. Electrolyte imbalances, impaired oxygenation and ventilation, as well as abnormalities in vascular tone, are among some of the altered homeostatic functions observed in these patients1. Nitric oxide (NO), a key molecule that regulates vascular tone, plays a major role in the pathogenesis of the hyperdynamic circulatory syndrome observed in portal hypertension in liver diseases. NO is paradoxically regulated in portal hypertension (Figure 1).

Keywords

Nitric Oxide Portal Hypertension Superior Mesenteric Artery Portal Pressure eNOS Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Groszmann RJ, Loureiro-Silva M, Tsai MH. The Biology of Portal Hypertension, 4th edn. New York: Lippincott Williams & Wilkins; 2001.Google Scholar
  2. 2.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Wiest R, Groszmann RJ. Nitric oxide and portal hypertension: its role in the regulation of intrahepatic and splanchnic vascular resistance. Semin Liver Dis. 1999;19:411–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsai MH, Twakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Iwakiri Y, Tsai MH, McCabe TJ et al. The phosphorylation of endothelial nitric oxide synthase initiates excessive nitric oxide production in the early phases of portal hypertension. Am J Physiol Heart Circ Physiol. 2002;282:H2084–90.PubMedGoogle Scholar
  7. 7.
    Morales-Ruiz M, Jimenez W, Perez-Sala D et al. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 1996;24:1481–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999;276: GI043–51.Google Scholar
  9. 9.
    Martin PY, Xu DL, Niederberger M et al. Up-regulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996;270:F494–9.PubMedGoogle Scholar
  10. 10.
    Cahill PA, Redmond EM, Hodges R, Zhang S, Sitzmann IV. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol. 1996;25:370–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Hori N, Wiest R, Groszmann RJ. Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats. Hepatology. 1998;28:1467–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Buga GM, Gold ME, Fukuto JM, Ignarro LJ. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991;17:187–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Chaudhuri G, Buga GM, Gold ME, Wood KS, Ignarro LJ. Characterization and actions of human umbilical endothelium derived relaxing factor. Br J Pharmacol. 1991; 102:331–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Wiest R, Cadelina G, Milstien S, McCuskey RS, Garcia-Tsao G, Groszmann RJ. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology. 2003;38:1508–15.PubMedGoogle Scholar
  15. 15.
    Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, Pober JS. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994;93:2236–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Xu L, Carter EP, Ohara M et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol. 2000;279:F1110–15.PubMedGoogle Scholar
  17. 17.
    Segal SS, Brett SE, Sessa We. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol. 1999;277:H1167–77.PubMedGoogle Scholar
  18. 18.
    Boulanger CM, Heymes C, Benessiano J, Geske RS, Levy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83:1271–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Papadaki M, Tilton RG, Eskin SG, McIntire LV. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow. Am J Physiol. 1998;274:H616–26.PubMedGoogle Scholar
  20. 20.
    Abu-Soud HM, Loftus M, Stuehr DJ. Subunit dissociation and unfolding of macrophage NO synthase: relationship between enzyme structure, prosthetic group binding, and catalytic function. Biochemistry. 1995;34:11167–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology. 1995;22:598–606.PubMedGoogle Scholar
  22. 22.
    Chu CJ, Lee FY, Wang SS et al. Hyperdynamic circulation of cirrhotic rats with ascites: role of endotoxin, tumour necrosis factor-alpha and nitric oxide. Clin Sci (Lond). 1997;93:219–25.Google Scholar
  23. 23.
    Lopez-Talavera JC, Cadelina G, Olchowski J, Merrill W, Groszmann RJ. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996; 23:1616–21.PubMedGoogle Scholar
  24. 24.
    Kilbourn RG, Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-l, or endotoxin. J Natl Cancer Inst. 1990;82:772–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995;108:761–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Katusic ZS, Stelter A, Milstien S. Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18:27–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Wever RM, van Dam T, van Rijn HJ, de Groot F, Rabelink TJ. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem Biophys Res Commun. 1997;237:340–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest. 1999;104:1223–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez-Rodriguez CM, Prada IR, Prieto J et al. Circulating adrenomedullin in cirrhosis: relationship to hyperdynamic circulation. J Hepatol. 1998;29:250–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Genesca J, Gonzalez A, Catalan R et al. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis: relationship to nitric oxide. Dig Dis Sci. 1999;44:372–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou M, Chaudry IH, Wang P. The small intestine is an important source of adrenomedullin release during polymicrobial sepsis. Am J Physiol Regul Integr Comp Physiol. 2001;281:R654–60.PubMedGoogle Scholar
  32. 32.
    Wang P, Ba ZF, Cioffi WG, Bland KI, Chaudry IH. The pivotal role of adrenomedullin in producing hyperdynamic circulation during the early stage of sepsis. Arch Surg. 1998;133: 1298–304.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishimatsu H, Suzuki E, Nagata D et al. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res. 2001;89:63–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Batkai S, Jarai Z, Wagner JA et al. Endocannabinoids acting at vascular CBl receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Ros J, Claria J, To-Figueras J et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28:926–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Gupta TK, Toruner M, Groszmann RJ. Intrahepatic modulation of portal pressure and its role in portal hypertension. Role of nitric oxide. Digestion. 1998;59:413–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114:344–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Shah Y, Haddad FG, Garcia-Cardena G et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997; 100:2923–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Fiorucci S, Antonelli E, Morelli O et al. NCX-1000, a NO-releasing derivative of ursodeoxycholic acid, selectively delivers NO to the liver and protects against development of portal hypertension. Proc Natl Acad Sci USA. 2001;98:8897–902.PubMedCrossRefGoogle Scholar
  42. 42.
    Fiorucci S, Mencarelli A, Palazzetti B, Del Soldato P, Morelli A, Ignarro LJ. An NO derivative of ursodeoxycholic acid protects against Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci USA. 2001;98:2652–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiorucci S, Antonelli E, Morelli A. Nitric oxide and portal hypertension: a nitric oxide-releasing derivative of ursodeoxycholic acid that selectively releases nitric oxide in the liver. Dig Liver Dis. 2003;35(Suppl. 2):S61–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Silva M, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Nitric oxide (NO) delivery by NCX reduced the resistance of hepatic microcirculation of the cirrhotic liver in rats. Hepatology. 2003 (AASLD abstract).Google Scholar
  45. 45.
    Garcia-Tsao G. Current management of the complications of cirrhosis and portal hypertension: variceal hemorrhage, ascites, and spontaneous bacterial peritonitis. Gastroenterology. 2001;120:726–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Kroeger RJ, Groszmann RI. The effect of the combination of nitroglycerin and propranolol on splanchnic and systemic hemodynamics in a portal hypertensive rat model. Hepatology. 1985;5:425–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Shah V, Chen AF, Cao S et al. Gene transfer of recombinant endothelial nitric oxide synthase to liver in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol. 2000; 279:G1023–30.PubMedGoogle Scholar
  48. 48.
    Yu Q, Shao R, Qian HS, George SE, Rockey DC. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest. 2000;105:741–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Morales-Ruiz M, Cejudo-Martin P, Fernandez-Varo G et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology. 2003; 125:522–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Yasuko Iwakiri
  • Roberto J. Groszmann
    • 1
  1. 1.VA Connecticut Healthcare SystemHepatic Hemodynamic Laboratory/111JWest HavenUSA

Personalised recommendations