Pathophysiology of variceal bleeding

  • Angels Escorsell
  • Jaime Bosch


Variceal formation is an almost unavoidable complication of cirrhosis. Varices are already present in about 40% of compensated, asymptomatic patients at diagnosis, and the incidence increases to up to 90% of patients on long-term follow up1. The annual incidence is around 6% per year2.


Portal Hypertension Esophageal Varix Variceal Bleeding Portal Pressure Wall Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Amico G, Pagliaro L, Bosch J. Pharmacological treatment of portal hypertension: an evidence-based approach. Semin Liver Dis. 1999;19:475–505.PubMedCrossRefGoogle Scholar
  2. 2.
    Pagliaro L, D’Amico G, Pasta L et al. Portal hypertension in cirrhosis: natural history. In: Bosch J, Groszmann RJ, editors. Portal Hypertension: Pathophysiology and Treatment. Oxford: Blackwell Science, 1992:72–92.Google Scholar
  3. 3.
    Vianna A. Anatomy of the portal venous system in portal hypertension. In: McIntyre N, Benhamou JP, Bircher J, Rizzetto M, Rodes J, editors. Oxford Textbook of Clinical Hepatology. Oxford: Oxford University Press, 1991:393–9.Google Scholar
  4. 4.
    Noda T. Angioarchitectural study of esophageal varices (with special reference to variceal rupture). Virchows Arch A. 1984;404:381–92.CrossRefGoogle Scholar
  5. 5.
    Spence RAJ. The venous anatomy of the lower esophagus in normal subjects and in patients with varices: an image analysis study. Br J Surg. 1984;71:739–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Fernandez M, Vizzutti F, Garcia-Pagan JC et al. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984;87:1120–6.PubMedGoogle Scholar
  8. 8.
    Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1988;28:926–31.CrossRefGoogle Scholar
  9. 9.
    Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114:344–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Viallet A, Marleau D, Huet PM et al. Hemodynamic evaluation of patients with intrahepatic portal hypertension. Relationship between bleeding varices and the portohepatic gradient. Gastroenterology. 1975;69:1297–300.PubMedGoogle Scholar
  11. 11.
    Garc ía-Tsao G, Groszmann RJ, Fisher RI et al. Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology. 1985;5:419–24.CrossRefGoogle Scholar
  12. 12.
    Rigau J, Bosch J, Bordas JM et al. Endoscopic measurement of variceal pressure in cirrhosis: correlation with portal pressure and variceal hemorrhage. Gastroenterology. 1989;96: 873–80.PubMedGoogle Scholar
  13. 13.
    Polio J, Groszmann RJ. Hemodynamic factors involved in the development and rupture of esophageal varices: a pathophysiologic approach to treatment. Semin Liver Dis. 1986; 6:318–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Groszmann RJ, Bosch J, Grace N et al. Hemodynamic events in a prospective randomized trial of propranolol vs placebo in the prevention of the first variceal hemorrhage. Gastroenterology. 1990;99:1401–7.PubMedGoogle Scholar
  15. 15.
    Feu F, García-Pagán JC, Bosch J et al. Relation between portal pressure response to pharmacotherapy and risk of recurrent variceal hemorrhage in patients with cirrhosis. Lancet. 1995;346:1056–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Casado M, Bosch J, García-Pagán JC et al. Clinical events following TIPS: correlation with hemodynamic findings. Gastroenterology. 1998;114:1296–303.PubMedCrossRefGoogle Scholar
  17. 17.
    Villanueva C, Balanzó J, Novella MT et al. Nadolol plus isosorbide-5-mononitrate compared to sclerotherapy for the prevention of variceal rebleeding. N Engl J Med. 1996;334:1624–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Villanueva C, Minana J, Ortiz J et al. Endoscopic ligation compared with combined treatment with nadolol and isosorbide mononitrate to prevent recurrent variceal bleeding. N Engl J Med. 2001;345:647–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Vorobioff J, Groszmann RJ, Picabea E et al. Prognostic value of hepatic venous pressure gradient measurements in alcoholic cirrhosis: a 10-year prospective study. Gastroenterology. 1996;111:701–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Escorsell A, Bordas JM, Castañeda B et al. Predictive value of the variceal pressure response to continued pharmacogical therapy in patients with cirrhosis and portal hypertension. Hepatology. 2000;31:1061–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Moitinho E, Escorsell A, Bandi JC et al. Prognostic value of early measurements of portal pressure in acute variceal hemorrhage. Gastroenterology. 1999;117:626–31.PubMedCrossRefGoogle Scholar
  22. 22.
    McCormick PA, Dick R, Graffeo M et al. The effect of non-protein liquid meals on the hepatic venous pressure gradient in patients with cirrhosis. J Hepatol. 1990;11:221–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Luca A, García-Pagán JC, Bosch J et al. Effects of ethanol consumption on hepatic hemodynamics in patients with alcoholic cirrhosis. Gastroenterology. 1997;112:1291–6.CrossRefGoogle Scholar
  24. 24.
    García-Pagán JC, Feu F, Castells A et al. Circadian variations of portal pressure and variceal hemorrhage in patients with cirrhosis. Hepatology. 1994;19:595–601.PubMedCrossRefGoogle Scholar
  25. 25.
    García-Pagán JC, Santos C, Barbera JA et al. Physical exercise increases portal pressure in patients with cirrhosis and portal hypertension. Gastroenterology. 1996;111:1300–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Escorsell A, Ginès A, Llach J et al. Increasing intra-abdominal pressure increases pressure, volume and wall tension in esophageal varices. Hepatology. 2002;36:936–40.PubMedGoogle Scholar
  27. 27.
    Bredfeldt JE, Bosch J, Groszmann RJ. Splanchnic angiography increases portal pressure in portal-hypertensive patients. Hepatology. 1982;2:684 (abstract).Google Scholar
  28. 28.
    Bosch J, Groszmann RJ. Measurement of azygos venous blood flow by a continuous thermodilution technique: an index of blood flow through gastroesophageal collaterals in cirrhosis. Hepatology. 1984;4:424–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Bosch J, Mastai R, Kravetz D et al. Measurement of azygos venous blood flow in the evaluation of portal hypertension in patients with cirrhosis: clinical and hemodynamic correlations in 100 patients. J Hepatol. 1985;1:125–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Kroeger RJ, Groszmann RJ. Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model. Hepatology. 1985;5:97–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Sikuler E, Kravetz D, Groszmann RJ. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol. 1985;248:G618–25.PubMedGoogle Scholar
  32. 32.
    Mosca P, Lee FY, Kaumann AI, Groszmann RJ. Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium. Am J Physiol. 1992;263:G544–50.PubMedGoogle Scholar
  33. 33.
    Moreno L, Martínez-Cuesta MA, Piqué JM et al. Anatomical differences in responsiveness to vasoconstrictors in the mesenteric vein from normal and portal-hypertensive rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 1996;354:474–80.CrossRefGoogle Scholar
  34. 34.
    Lee FY, Albillos A, Colombato LA, Groszmann RJ. The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats. Hepatology. 1992;16: 1043–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Pizcueta MP, de Lacy AM, Kravetz D et al. Propranolol decreases portal pressure without changing portocollateral resistance in cirrhotic rats. Hepatology. 1989;10:953–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Escorsell A, Ferayorni L, Bosch J et al. The portal pressure response to beta-blockade is greater in cirrhotic patients without varices than in those with varices. Gastroenterology. 1997;112:2012–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Groszmann RJ, García-Tsao G, Makuch R et al. Multicenter randomized placebo-controlled trial of non-selective beta-blockers in prevention of the complications of portal hypertension: final results and identification of a predictive factor. Hepatology. 2003;38 (Suppl. 1):206A.CrossRefGoogle Scholar
  38. 38.
    Feu F, Bordas JM, Luca A et al. Reduction of variceal pressure by propranolol: comparison of the effects on portal pressure and azygos blood flow in patients with cirrhosis. Hepatology. 1993;18:1082–9.PubMedGoogle Scholar
  39. 39.
    Ruiz del Árbol L, Martín de Argila C, Vázquez M et al. Endoscopic measurement of variceal pressure during hemorrhage from esophageal varices. Hepatology. 1992;16:147 (abstract).Google Scholar
  40. 40.
    Nevens F, Fevery J. Variceal pressure predicts a first variceal hemorrhage: a prospective cohort study. Hepatology. 1996;24:209 (abstract).CrossRefGoogle Scholar
  41. 41.
    North Italian Endoscopic Club for the Study and Treatment of Esophageal Varices. Prediction of the first variceal hemorrhage in patients with cirrhosis of the liver and esophageal varices. N Engl J Med. 1988;13:983–9.Google Scholar
  42. 42.
    Lebrec D, De Fleuny P, Rueff B et al. Portal hypertension, size of the varices and risk of gastrointestinal bleeding in alcoholic cirrhosis. Gastroenterology. 1980;79:1139–44.PubMedGoogle Scholar
  43. 43.
    Zoli M, Merkel C, Magalotti D et al. Evaluation of a new endoscopic index to predict first bleeding from the upper gastrointestinal tract in patients with cirrhosis. Hepatology. 1996;24:1047–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Nevens F, Sprengers D, Feu F et al. Measurement of variceal pressure with an endoscopic pressure sensitive gauge: validation and effect of propranolol therapy in chronic conditions. J Hepatol. 1996;24:66–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Miller L, Banson FL, Bazir K et al. Risk of esophageal variceal bleeding based on endoscopic ultrasound evaluation of the sum of esophageal variceal cross-sectional surface area. Am J Gastroenterol. 2003;98:454–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Escorsell A, Bordas JM, Feu F et al. Endoscopic assessment of variceal volume and wall tension in cirrhotic patients: effects of pharmacological therapy. Gastroenterology. 1997;113:1640–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Genecin P, Polio J, Groszmann RJ. Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension. Am J Physiol. 1990;259: G498–503.PubMedGoogle Scholar
  48. 48.
    Garcia-Pagán JC, Salmerón JM, Feu F et al. Effects of low sodium diet and spironolactone on portal pressure in patients with compensated cirrhosis. Hepatology. 1994;19:1095–9.PubMedGoogle Scholar
  49. 49.
    Kravetz D, Bosch J, Arderiu M et al. Hemodynamic effects of blood volume restitution following a hemorrhage in rats with portal hypertension due to cirrhosis of the liver: influence of the extent of portal-systemic shunting. Hepatology. 1989;9:808–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Castañeda B, Morales J, Lionetti R et al. Effects of blood volume restitution following a portal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology. 2001;33:821–5.PubMedCrossRefGoogle Scholar
  51. 51.
    McCormack TT, Rose JD, Smith PM, Johnson AG. Perforating veins and blood flow in esophageal varices. Lancet. 1983;2:1442–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Mastai R, Grande L, Bosch J et al. Effects of metociopramide and domperidone on azygos venous blood flow in patients with cirrhosis and portal hypertension. Hepatology. 1986;6:1244–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Saraya A, Sarin SK. Effects of intravenous nitroglycerin and metociopramide on intravariceal pressure: a double-blind, randomized study. Am J Gastroenterol. 1993;88:1850–3.PubMedGoogle Scholar
  54. 54.
    Casadevall M, Pique JM, Cirera I et al. Increased blood hemoglobin attenuates splanchnic vasodilation in portal-hypertensive rats by nitric oxide inactivation. Gastroenterology. 1996;110:1156–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernstein DE, Jeffers L, Erhardtsen E et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology. 1997;113:1930–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Ejlersen E, Melsen T, Ingerslev J et al. Recombinant activated factor VII (rFVIIa) acutely normalizes prothrombin time in patients with cirrhosis during bleeding from oesophageal varices. Scand J Gastroenterol. 2001;36:1081–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Thabut D, de Franchis R, Bendtsen F et al. Efficacy of activated recombinant factor VII (rFVIIa; Novoseven) in cirrhotic patients with upper gastrointestinal bleeding: a randomised placebo-controlled double-blind multicenter trial. J Hepatol. 2003;38(Suppl. 2):13A.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Angels Escorsell
  • Jaime Bosch
    • 1
  1. 1.Hepatic Hemodynamic LaboratoryLiver Unit Hospital ClinicBarcelonaSpain

Personalised recommendations