Inhibition of nitric-oxide-mediated vasodilation (including K+ channels)

  • Richard Moreau
Conference paper

Abstract

Portal hypertension is associated with a chronic hyperkinetic syndrome1, 2, 3. This syndrome is characterized by elevated cardiac output, low arterial pressure and low systemic vascular resistance2, 3. Splanchnic circulation is also hyperdynamic; i.e. blood flow is elevated and vascular resistance is low in arteries that supply splanchnic organs1, 4. Systemic and splanchnic alterations are interrelated: decreased systemic vascular resistance (systemic vasodilation) is largely due to the decrease in splanchnic arterial resistance (splanchnic vasodilation)5. Finally, in portal hypertension, there is in-vivo and ex-vivo arterial hypo reactivity to different receptor-dependent and -independent vasoconstrictors6, 7, 8, 9, 10, 11, 12, 13, 14. A hyperkinetic syndrome also occurs in extrahepatic portal hypertension15, but it is less marked than that observed in cirrhosis.

Keywords

Nitric Oxide Portal Hypertension Bacterial Translocation eNOS Phosphorylation Hyperdynamic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Groszmann R. Hyperdynamic circulation of liver disease forty years later: pathophysiology and clinical consequences. Hepatology. 1994;20:1359–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Moreau R, Lee SS, Soupison T, Roche-Sicot J, Sicot C. Abnormal tissue oxygenation in patients with cirrhosis and liver failure. J Hepatol. 1988;7:98–105.PubMedCrossRefGoogle Scholar
  3. 3.
    Braillon A, Cales P, Valla D, Gaudy D, Geoffroy P, Lebrec D. Influence of the degree of liver failure on systemic and splanchnic haemodynamics and on response to propranolol in patients with cirrhosis. Gut. 1986;27:1204–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Lebrec D, Blanchet L. Effects of two models of portal hypertension on splanchnic organ blood flow in the rat. Clin Sci. 1985;68:23–8.PubMedGoogle Scholar
  5. 5.
    Fernandez-Seara J, Prieto J, Quiroga J et al. Systemic and regional hemodynamics in patients with liver cirrhosis and ascites with and without functional renal failure. Gastroenterology. 1989;97:1304–12.PubMedGoogle Scholar
  6. 6.
    Murray BM, Paller MS. Pressor resistance to vasopressin in sodium depletion, potassium depletion, and cirrhosis. Am J Physiol. 1986;251:R525–30.PubMedGoogle Scholar
  7. 7.
    Pinzani M, Marra F, Fusco BM et al. Evidence for α1-adrenoreceptor hyperresponsiveness in hypotensive cirrhotic patients with ascites. Am J Gastroenterol. 1991;86:711–14.PubMedGoogle Scholar
  8. 8.
    Braillon A, Cailmail S, Gaudin C, Lebrec D. Reduced splanchnic vasoconstriction to angiotensin II in conscious rats with biliary cirrhosis. J Hepatol. 1993;17:86–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Ryan J, Sudhir K, Jennings G, Esler M, Dudley F. Impaired reactivity of the peripheral vascular to pressor agents in alcoholic cirrhosis. Gastroenterology. 1993;105:1167–72.PubMedGoogle Scholar
  10. 10.
    Hartleb M, Moreau R, Cailmail S, Gaudin C, Lebrec D. Vascular hyporesponsiveness to endothelin-l in rats with cirrhosis. Gastroenterology. 1994;107:1085–93.PubMedGoogle Scholar
  11. 11.
    Hartleb M, Moreau R, Gaudin C, Lebrec D. Lack of vascular hypo responsiveness to the L-type calcium channel activator, Bay K 8644, in rats with cirrhosis. J Hepatol. 1995; 22:202–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Liao J, Yu PC, Lin HC, Lee FY, Kuo JS, Yang MCM. Study on the vascular reactivity and α1-adrenoceptors of portal hypertensive rats. Br J Pharmacol. 1994;111:439–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang YT, Wang GF, Yang MCM, Chang SP, Lin HC, Hong CY. Vascular hyporesponsiveness in aorta from portal hypertensive rats: possible sites of involvement. J Pharmacol Exp Ther. 1996;278:535–41.PubMedGoogle Scholar
  14. 14.
    Sogni P, Sabry S, Moreau R, Gadano A, Lebrec D, Din-Xuan AT. Hyporeactivity of mesenteric resistance arteries in portal hypertensive rats. J Hepatol. 1996;24:487–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Moreau R, Cailmail S, Lebrec D. Haemodynamic effects of vasopressin in portal hypertensive rats receiving clonidine. Liver. 1994;14:45–9.PubMedGoogle Scholar
  16. 16.
    Pizcueta P, Pique JM, Bosch J, Whittle BJR, Moncada S. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol. 1992;105:184–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Claria J, Jiménez W, Ros J et al. Pathogenesis of arterial hypotension in cirrhotic rats with ascites: role of endogenous nitric oxide. Hepatology. 1992;15:343–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Sogni P, Moreau R, Ohsuga M et al. Evidence for a normal nitric oxide-mediated vasodilator tone in conscious rats with cirrhosis. Hepatology. 1992;16:980–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee FY, Albillos A, Colombato LA, Groszmann RJ. The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats. Hepatology. 1992; 16:1043–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Sieber CC, Groszmann RJ. In vitro hypo reactivity to methoxamine in portal hypertensive rats: reversal by nitric oxide blockade. Am J Physiol. 1992;262:G996–1001.PubMedGoogle Scholar
  21. 21.
    Sieber CC, Groszmann RJ. Nitric oxide mediates hypo reactivity to vasopressors in mesenteric vessels of portal hypertensive rats. Gastroenterology. 1992;103:235–9.PubMedGoogle Scholar
  22. 22.
    Pizcueta P, Piqué JM, Fernandez M et al. Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology. 1992;103:1909–15.PubMedGoogle Scholar
  23. 23.
    Sieber CC, Lopez-Talavera JC, Groszmann RJ. Role of nitric oxide in the in vitro splanchnic vascular hypo reactivity in ascitic cirrhotic rats. Gastroenterology. 1993;104:1750–4.PubMedGoogle Scholar
  24. 24.
    Michielsen PP, Boeckxstaens GE, Sys SU, Herman AG, Pelckmans PA. Role of nitric oxide in hyporeactivity to noradrenaline of isolated aortic rings in portal hypertensive rats. Eur J Pharmacol. 1995;273:167–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Niederberger M, Gines P, Tsai P et al. Increased aortic cyclic guanosine monophosphate concentration in experimental cirrhosis in rats: evidence for a role of nitric oxide in the pathogenesis of arterial vasodilation in cirrhosis. Hepatology. 1995;21:1625–31.PubMedGoogle Scholar
  26. 26.
    Cahill PA, Foster C, Redmond EM, Gingalewski C, Wu Y, Sitzmann JV. Enhanced nitric oxide synthase activity in portal hypertensive rabbits. Hepatology. 1995;22:598–606.PubMedGoogle Scholar
  27. 27.
    Kanwar S, Kubes P, Tepperman BL, Lee SS. Nitric oxide synthase activity in portalhypertensive and cirrhotic rats. J Hepatol. 1996;25:85–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin PY, Xu DI, Niederberger M et al. Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996;270:F494–9.PubMedGoogle Scholar
  29. 29.
    Pilette C, Moreau R, Sogni P et al. Haemodynamic and hormonal responses to long-term inhibition of nitric oxide synthesis in rats with portal hypertension. Eur J Pharmacol. 1996;312:63–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Pilette C, Kirstetter P, Sogni P, Cailmail S, Moreau R, Lebrec D. Dose-dependent effects of a nitric oxide biosynthesis inhibitor on hyperdynamic circulation in two models of portal hypertension in conscious rats. J Gastroenterol Hepatol. 1996;11:1–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Gadano AC, Sogni P, Yang S et al. Endothelial ca1cium-calmodium dependent nitric oxide synthase in the in vitro vascular hypo reactivity of portal hypertensive rats. J Hepatol. 1997;26:678–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Atucha NM, Ortiz MC, Fortepiani LA, Ruiz FM, Martinez C, Garcia-Estan J. Role of cyclic guanosine monophosphate and K+ channels as mediators of the mesenteric vascular hyporesponsiveness in portal hypertensive rats. Hepatology. 1998;27:900–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Ohta M, Tarnawski AS, Itani R et al. Tumor necrosis factor a regulates nitric oxide synthase expression in portal hypertensive gastric mucosa of rats. Hepatology. 1998;27:906–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Pateron D, Oberti F, Lefilliatre P et al. Relationship between vascular reactivity in vitro and blood flows in rats with cirrhosis. Clin Sci. 1999;97:313–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Wiest R, Das S, Gadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesentenric vascular contractility. J Clin Invest. 1999;104:1223–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999; 276:G1043–51.PubMedGoogle Scholar
  37. 37.
    Munoz J, Albillos A, Perez-Paramo M, Rossi I, Alvarez-Mon M. Factors mediating the hemodynamic effects of tumor necrosis factor-alpha in portal hypertensive rats. Am J Physiol. 1999;276:G687–93.PubMedGoogle Scholar
  38. 38.
    Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann RJ, Sessa WC. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol. 1999;277:G463–8.PubMedGoogle Scholar
  39. 39.
    Pateron D, Tazi KA, Sogni P et al. Role of aortic nitric oxide synthase 3 (eNOS) in the systemic vasodilation of portal hypertension. Gastroenterology. 2000;119:196–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Xu L, Carter EP, Ohara M. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol. 2000;279:FI110–15.Google Scholar
  41. 41.
    Iwakiri Y, Tsai MH, McCabe TJ et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol. 2002;282:H2084–90.Google Scholar
  42. 42.
    Rabiller A, Nunes H, Lebrec D et al. Prevention of Gram-negative translocation reduces the severity of hepatopulmonary syndrome. Am J Respir Crit Care Med. 2002;166:514–17.PubMedCrossRefGoogle Scholar
  43. 43.
    Kawanaka H, Jones MK, Szabo IL et al. Activation of eNOS in rat portal hypertensive gastric mucosa is mediated by TNF-alpha via the PI 3-kinase-Akt signaling pathway. Hepatology. 2002;35:393–402.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Tazi KA, Barrière E, Moreau R et al. Role of shear stress in aortic eNOS up-regulation in rats with biliary cirrhosis. Gastroenterology. 2002;122:1869–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Casadevall M, Pique JM, Cirera I et al. Increased blood hemoglobin attenuates splanchnic vasodilation in portal-hypertensive rats by nitric oxide inactivation. Gastroenterology. 1996;110:1156–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins. FASEB J. 1993;7:328–38.PubMedGoogle Scholar
  49. 49.
    Moreau R, Lebrec D. Endogenous factors involved in the control of arterial tone in cirrhosis. J Hepatol. 1995;22:370–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Barrière E, Tazi KA, Pessione F, Heller J, Poirel O, Lebrec D, Moreau R. Role of small-conductance Ca2+-dependent K+ channels in in vitro NO-mediated aortic hyporeactivity to a-adrenergic vasoconstriction in rats with cirrhosis. J Hepatol. 2001;35:350–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Moreau R. Heme oxygenase: protective enzyme or portal hypertensive molecule? J Hepatol. 2001;34:936–939.PubMedCrossRefGoogle Scholar
  52. 52.
    Tang M, Wang G, Lu P et al. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9:1506–12.PubMedCrossRefGoogle Scholar
  53. 53.
    Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372:231–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Theodorakis NG, Wang YN, Skill NJ et al. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene-knockout mice. Gastroenterology. 2003;124:1500–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol. 2002;283:G1074–81.Google Scholar
  56. 56.
    Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol. 1999;39:191–220.PubMedCrossRefGoogle Scholar
  57. 57.
    Ortiz MC, Fortepiani LA, Martinez C, Atucha NM, Garcia-Estan J. Renal and pressor effects of amino guanidine in cirrhotic rats with ascites. J Am Soc Nephrol. 1996;7:2694–9.PubMedGoogle Scholar
  58. 58.
    Criado M, Flores O, Ortiz MC et al. Elevated glomerular and blood mononuclear lymphocyte nitric oxide production in rats with chronic bile duct ligation: role of inducible nitric oxide synthase activation. Hepatology. 1997;26:268–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Moore WM, Webber RK, Jerome GM, Tjoeng FS, Misko TP, Currie MG. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994;37:3886–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Porst M, Hartner A, Krause H, Hilgers KF, Veelken R. Inducible nitric oxide synthase and glomerular hemodynamics in rats with liver cirrhosis. Am J Physiol Renal Physiol. 2001;281:F293–9.PubMedGoogle Scholar
  61. 61.
    Fernandez M, Garcia-Pagan JC, Casadevall M et al. Evidence against a role for inducible nitric oxide synthase in the hyperdynamic circulation of portal-hypertensive rats. Gastroenterology. 1995;108:1487–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Albornoz L, Bandi JC, de las Heras M, Mastai R. Dexamethasone, an inhibitor of the expression of inducible nitric oxide synthase, does not modify the hyperdynamic state in cirrhotic rats. Medicina (B Aires). 2000;60:477–81.Google Scholar
  63. 63.
    Shaul PW. Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol. 2002;64:749–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol. 2003;284:R1–12.Google Scholar
  65. 65.
    Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol. 2003;285:C499–508.Google Scholar
  66. 66.
    Nilius B, Viana F, Droogmans G. Ion channels in vascular endothelium. Annu Rev Physiol. 1997;59:145–70.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen G, Goeddel DV. TNF-Rl signaling: a beautiful pathway. Science. 2002;296:1634–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Wiest R, Cadelina G, Milstien S, McCuskey RS, Garcia-Tsao G, Groszmann RJ. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology. 2003;38:1508–15.PubMedGoogle Scholar
  69. 69.
    Perez-Paramo M, Munoz J, Albillos A et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology. 2000;31:43–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Albillos A, de la Hera A, Gonzalez M et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology. 2003;37:208–17.PubMedCrossRefGoogle Scholar
  71. 71.
    Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995;108:761–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Lopez-Talavera JC, Cadelina G, Olchowski J, Merrill W, Groszmann RJ. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996; 23:1616–21.PubMedGoogle Scholar
  73. 73.
    Lopez-Talavera JC, Levitzki A, Martinez M, Gazit A, Esteban R, Guardia J. Tyrosine kinase inhibition ameliorates the hyperdynamic state and decreases nitric oxide production in cirrhotic rats with portal hypertension and ascites. J Clin Invest. 1997;100:664–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;135–45.Google Scholar
  75. 75.
    Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov. 2004;3:17–26.PubMedCrossRefGoogle Scholar
  76. 76.
    Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995;267:1782–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2:717–26.PubMedCrossRefGoogle Scholar
  78. 78.
    Marshall JC. Such stuff as dreams arc made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov. 2003;2:391–405.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Richard Moreau
    • 1
  1. 1.Service hepato-gastroenterologieINSERM U-481, Hopital BeaujonClichyFrance

Personalised recommendations