Advances in Molecular Cytogenetics: Potential for Crop Improvement

  • P. K. Gupta
  • M. K. Dhar


Advances made over the last two decades in techniques and approaches used in molecular cytogenetics research and the results obtained so far have been briefly reviewed. These include the use of chromosome banding, fluorescence in situ hybridisation (FISH) and multicolour FISH (McFISH), genomic in situ hybridisation (GISH), flow cytometry, pulse field gel electrophoresis (PFGE), microdissection and microcloning, among others. These tools have been used both for identification of individual chromosomes and for physical localization of DNA sequences on individual chromosomes. Construction of genetic and physical maps of crop plants involving molecular markers as well as genes for agronomic traits has been discussed briefly. The use of these maps in comparative genomics, both at the macro- and micro-colinearity levels and for map based cloning has been briefly reviewed. The development and use of bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) and the future prospects of the development of plant artificial chromosomes (PACs) have also been discussed. The progress made in discovery of new genes through reverse genetics and functional genomics approach has also been presented.


Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Individual Chromosome Yeast Artificial Chromosome Maize Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albani D., Cote M. J., Armstrong K. C., Chen Q., Segal A. and Robert L. S. 1993. PCR amplification of microdissected wheat chromosome arms in a simple tube reaction. Plant J., 4: 899–903.PubMedCrossRefGoogle Scholar
  2. Arumuganathan K. and Earle E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol Biol. Rep., 9: 208–218.CrossRefGoogle Scholar
  3. Arumuganathan K., Champoux J., Li L. and Gill K. S. 2000. Flow-cytometric sorting of individual chromosomes and chromosome arms of corn and wheat. In: Proc. 6th Intern. Congr. Plant Mol Biol., Abstract No. S29-2, Quebec (June 18-24, 2000).Google Scholar
  4. Badaeva E. D., Badaev N. S., Gill B. S. and Filatenko A. A. 1994. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Pl. Syst Evol., 192: 117–145.CrossRefGoogle Scholar
  5. Bennetzen J. L. 2000. Comparative sequence analysis of plant nuclear genomes: Microcolinearity and its exceptions. The Plant Cell 12: 1021–1029.PubMedGoogle Scholar
  6. Burke D. T., Carle G. F. and Olson M. V. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 236: 806–812.PubMedCrossRefGoogle Scholar
  7. Caspersson T., Zech L., Modest E. J., Foley G. E., Wagh U. and Simonsson E. 1969. Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp. Cell Res., 58: 128–140.PubMedCrossRefGoogle Scholar
  8. Chen Q. and Armstrong K. 1994. Genomic in situ hybridization in Avena sativa. Genome, 37: 607–612.PubMedCrossRefGoogle Scholar
  9. Civardi L., Xia Y., Edwards K. J., Schnable P. S. and Nikolau BJ. 1994. The relationship between genetic and physical distances in the clones al-sh2 interval of the Zea mays. L. genome. Proc. Natl. Acad. Sci., USA, 91: 8268–8272.PubMedCrossRefGoogle Scholar
  10. Conia J., Bergounioux C., Perennes C., Muller P., Brown S. and Gadal P. 1987. Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry, 8: 500–508.PubMedCrossRefGoogle Scholar
  11. De Laat A. M. M. and Blass J. 1984. Flow-cytometric characterization and sorting of plant chromosomes. Theor. Appl. Genet., 67: 463–467.CrossRefGoogle Scholar
  12. Devos K. M., Atkinson M. D., Chinoy C. N., Harcourt R. L., Koebner R. M. D., Liu C. J., Masojc P., Xie D. X. and Gale M. D. 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet., 85: 673–680.CrossRefGoogle Scholar
  13. Devos K. M. and Gale M. D. 2000. Genome relationships: The grass model in current research. The Plant Cell, 12: 637–646.PubMedGoogle Scholar
  14. Doyle J. F. and Gaut B. F. 2000. Plant Molecular Evolution. Kluwer Academic Publishers. Dordrecht, The Netherlands.CrossRefGoogle Scholar
  15. Draye X., Lin Y. R., Qian X. Y., Bowers J. E., Burow G. B., Morrell P. L., Peterson D. G., Presting G. G., Ren S. X., Wing R. A. and Paterson A. H. 2001. Towards integration of comparative genetic, physical, diversity and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol, 125: 1325–1341.PubMedCrossRefGoogle Scholar
  16. Dubcovsky J., Ramakrishna W., SanMiguel P. J., Busso C. S., Yan L., Shiloff B. A. and Bennetzen J. L. 2001. Comparative sequence analysis fo collinear barley and rice bacterial artificial chromosomes. Plant Physiol, 125: 1342–1353.PubMedCrossRefGoogle Scholar
  17. Feng Q. et al 2002. Sequence and analysis of rice chromosome 4. Nature, 420: 312–316.CrossRefGoogle Scholar
  18. Feuillet C. and Keller B. 1999. High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci., USA, 96: 8265–8270.Google Scholar
  19. Florijn R. J., Bonden L. A. J., Vrolijk H., Wiegant J., Vaandrager J. W., Bass F., Den Dunnen J. T., Tanke HJ., Van Ommen G. J. B. and Raap A. K. 1995. High resolution DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet., 4: 831–836.PubMedCrossRefGoogle Scholar
  20. Fidlerova H., Senger G., Kost M., Sanseau P. and Sheer D. 1994. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet., 65: 203–205.CrossRefGoogle Scholar
  21. Fransz P. F., Stam M., Montijn B. M., Hoopen R. T., Wiegant J., Kooter J. M., Oud O. and Nanninga N. 1996. Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridisation. Plant J., 9: 767–774.CrossRefGoogle Scholar
  22. Friebe B. and Gill B. S. 1994. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica, 78: 1–5.Google Scholar
  23. Friebe B., Endo T. R. and Gill B. S. 1995. Chromosome banding methods. In: Plant Chromosomes: Laboratory methods, (ed. ) K. Fukui. CRC Press, Boca Raton, Florida, USA.Google Scholar
  24. Fukui K. 1986. Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor. Appl. Genet., 72: 27–32.CrossRefGoogle Scholar
  25. Fukui K., Minezawa M., Kamisugi Y., Yanagisawa T., Fujishita M. and Sakai F. 1991. Microdissection of barley chromosome by the cell workstation. Barley Genet., 6: 272–276.Google Scholar
  26. Fukui K. and Nakayama S. 2000. Imaging: An indispensable tool for modern chromosome research. In: Genetics and Biotechnology in Crop Improvement, (eds. ) P. K. Gupta et al. pp. 38–51. Rastogi Publications, Meerut, India.Google Scholar
  27. Gall J. G. and Pardue M. L. 1969. Formation and detection of RNA — DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci., USA, 63: 378–383.PubMedCrossRefGoogle Scholar
  28. Ganal M. W., Young N. D. and Tanksley S. D. 1989. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol. Gen. Genet., 215: 395–400.CrossRefGoogle Scholar
  29. Gerdes M. G., Carter M. C., Moen J. P. T. and Lawrence J. B. 1994. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J. Cell Biol., 126: 289–303.PubMedCrossRefGoogle Scholar
  30. Gill B. S. and Kimber G. 1974a. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci., USA, 71: 1247–1249.PubMedCrossRefGoogle Scholar
  31. Gill B. S. and Kimber G. 1974b. Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci., USA, 71: 4086–4090.PubMedCrossRefGoogle Scholar
  32. Gill B. S., Friebe B. and Endo T. R. 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 34: 830–839.CrossRefGoogle Scholar
  33. Gupta P. K. 1995. Recent trends in cytogenetics. In: Perspectives in Cytology and Genetics, (eds. ) G. K. Manna and S. C. Roy, 8: 633–642.Google Scholar
  34. Gupta P. K. 1998. Plant cytogenetics and plant breeding in the twenty first century. In: Perspectives in Cytology and Genetics, (eds. ) G. K. Manna and S. C. Roy. 9: 65–78.Google Scholar
  35. Gupta P. K. 2000. Chromosome and genome research in plants: Some recent developments. The Nucleus, 43: 94–113.Google Scholar
  36. Gupta P. K., Roy J. K. and Prasad M. 2001. Single Nucleotide Polymorphisms (SNPs) in Plants: A new paradigm in molecular marker technology and DNA polymorphism detection. Curr. Sci., 80: 524–535.Google Scholar
  37. Haaf T. and Ward D. C. 1994. High resolution ordering of YAC contigs using extended chromatin and chromosomes. Hum. Mol. Genet., 3: 629–633.PubMedCrossRefGoogle Scholar
  38. Hanson R. E., Zwick M. S., Choi S., Islam-Faridi M. N., McKnight T. D., Wing R. A., Price H. J. and Stelly D. M. 1995. Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome, 38: 646–651.PubMedCrossRefGoogle Scholar
  39. Heng H. H. Q., Squire J. and Sui L. C. 1992. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci., USA, 89: 9509–9513.PubMedCrossRefGoogle Scholar
  40. Heslop-Harrison J. S. 2000. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. The Plant Cell, 12: 617–635.PubMedGoogle Scholar
  41. Houseal T. W., Dackowski W. R., Landes G. M. and Klinger K. W. 1994. High resoltuion mapping of overlapping cosmids by fluorescence in situ hybridization. Cytometry, 15: 193–198.PubMedCrossRefGoogle Scholar
  42. Jellen E. N., Gill B. S. and Cox T. S. 1994. Genomic in situ hybridization differentiates between A/D and C genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena). Genome, 37: 613–618.PubMedCrossRefGoogle Scholar
  43. Jiang J., Gill B. S., Wang G. L., Ronald P. C. and Ward D. C. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci., USA, 92: 4487–4491.PubMedCrossRefGoogle Scholar
  44. Jung C., Kleine M., Fischer F. and Herrmann R. G. 1990. Analysis of DNA from a Beta procumbens chromosome fragment in sugar beet carrying a gene for nematode resistance. Theor. Appl. Genet., 79: 663–672.CrossRefGoogle Scholar
  45. Jung C., Claussen U., Horsthemke B., Fischer F. and Herrmann R. G. 1992. A DNA library from an individual Beta patellaris chromosome conferring nematode resistance obtained by microdissection of meiotic metaphase chromosome. Plant Mol. Biol., 20: 503–511.PubMedCrossRefGoogle Scholar
  46. Kao F. T. 1996. Chromosome microdissection and microcloning: Application to genome analysis. In: Methods of genome analysis in plants, (ed. ) P. P. Jauhar. CRC Press, Boca Raton, Florida, USA.Google Scholar
  47. Kenton A., Parokonny A. S., Gleba Y. Y. and Bennett M. D. 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genet., 240: 159–169.PubMedCrossRefGoogle Scholar
  48. Kuenzel G. and Korzun L. 1996. Physical mapping of cereal chromosome with special emphasis on barley. In: 5th Intern. Oat Conf. and 7th Intern. Barley Genetics Symp., (eds). Scoles G., Rossnagel B., Pp. 197–206. University Extension Press, University of Saskatchewan, Canada.Google Scholar
  49. Kuenzel G., Korzun L. and Meister A. 2000. Cytological integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 154: 397–412.Google Scholar
  50. Ku H. M., Vision T., Liu J. and Tanksley S. D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. PNAS, USA, 97: 9121–9126.CrossRefGoogle Scholar
  51. Kynast R. G., Odl and W. E., Okagaki R. J., Riera-Lizarazu O., Maquieira S. M., Russel C. D., Rines H. W. and Phillips R. L. 2000. Complete set of maize individual-chromosome additions in oat. CSSA Abstracts, Division C-7, page 188.Google Scholar
  52. Kynast R. G., Riera-Lizarau O., Vales M. I., Okagaki R. J., Maquieira S. M., Chen G., Ananiev E. V., Odl and W. E., Russell C. D. and Stec A. O. 2001. A complete set of maize individual chromosome additions to the oat genome. Plant Physiol., 125: 1216–1227.PubMedCrossRefGoogle Scholar
  53. Langer-Safer P. R., Levine M. and Ward D. C 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci., USA, 79: 4381–4385.PubMedCrossRefGoogle Scholar
  54. Le H. T., Armstrong K. C. and Miki B. 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep., 7: 150–158.CrossRefGoogle Scholar
  55. Lee J. H., Arumuganathan K., Kaeppler S. M., Kaeppler H. F. and Papa C. M. 1996. Cell synchronization and isolation of metaphase chromosomes from maize (Zea mays L. ) root tips for flow cytometric analysis and sorting. Genome, 39: 697–703.PubMedCrossRefGoogle Scholar
  56. Lee J. H., Yen Y., Arugumunathan K. and Baenziger P. S. 1997. DNA content of wheat chromosomes at interphase estimated by flow cytometry. Theor. Appl. Genet. Google Scholar
  57. Leister D. M., Kurth J., Laurie D. A., Yano M., Sasaki T., Devos K. M., Graner A. and Schulze-Lefert P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci., USA, 95: 370–375.PubMedCrossRefGoogle Scholar
  58. Li W. and Gill B. S. 2002. The colinearity of Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics, 160: 1153–1162.PubMedGoogle Scholar
  59. Liu B., Segal G., Vega J. M., Feldman M. and Abbo S. 1997. Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J., 11: 959–965.CrossRefGoogle Scholar
  60. Llaca V. and Messing J. 1998. Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J., 15: 211–220.PubMedCrossRefGoogle Scholar
  61. Lucretti S., Dolezel J., Shubert I. and Fuchs J. 1993. Flow karyotyping and sorting of Viciafaba chromosomes. Theor. Appl. Genet., 85: 665–672.CrossRefGoogle Scholar
  62. Mathews S. and Donoghue M. J. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286: 947–950.PubMedCrossRefGoogle Scholar
  63. McIntyre C. L., Pereira S., Moran L. B. and Appels R. 1990. New Secale cereale (rye) DNA derivatives for the detection of rye segments in wheat. Genome, 33: 635–640.PubMedCrossRefGoogle Scholar
  64. McNeil D., Lagudah E. S., Hohmann U. and Appels R. 1994. Amplification of DNA sequences in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences. Genome, 37: 320–327.PubMedCrossRefGoogle Scholar
  65. Mukai Y. 1996. Multicolor fluorescence in situ hybridization: A new tool for genome analysis. In: Methods of genome analysis in plants, (ed. ) P. P. Jauhar. CRC Press, Boca Raton, Florida, USA, pp 181–192.Google Scholar
  66. Mukai Y. and Yamamoto M. 1998. Application of multicolor fluorescence in situ hybridization to plant genome analysis. In: Genetics and Biotechnology in Crop Improvement, (eds. ) P. K. Gupta, S. P. Singh, H. S. Balyan, P. C. Sharma and B. Ramesh. Rastogi Publications, Meerut, India.Google Scholar
  67. Mukai Y., Friebe B., Hatchett M., Yamamoto M. and Gill B. S. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 102: 88–95.CrossRefGoogle Scholar
  68. Nonomura K. I. and Kurata N. 2000. Construction of rice artificial chromosome. In: Proc. 6th Intern. Congr. Plant Mol. Biol., Abstract No. S 03-60, Quebec (June 18-24, 2000).Google Scholar
  69. Okagaki R. J., Kynast R. G., Odl and W. E., Russel C. D., Livingston S. M., Rines H. W. and Phillips R. L. 2000. Mapping maize chromosomes using oat-maize radiation hybrid lines. CSSA Abstracts, Division C-7, page 188.Google Scholar
  70. Okagaki R. J., Kynast R. G., Livingston S. M., Russell C. D., Rines H. W. and Phillips R. L. 2001. Mapping maize sequences to chromosomes using oat-maize radiation hybrid lines. CSSA Abstracts, Division C-7, 188.Google Scholar
  71. Ozkan H., Levy A. A. and Feldman M. 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 13: 1735–1747.PubMedGoogle Scholar
  72. Panstruga R., Busches R., Piffanelli P. and Schulze-Lefert P. 1998. A contiguous 60 kb genomic stretch from barley reveal momecular evidence for gene islands in monocot genome. Nucleic Acids Res., 26: 1056–1062.PubMedCrossRefGoogle Scholar
  73. Parra I. and Windle B. 1993. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Gen., 5: 17–21.CrossRefGoogle Scholar
  74. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R. M., Liu S. C., Stansel J. W. and Irvine J. E. 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 269: 1714–1718.PubMedCrossRefGoogle Scholar
  75. Paterson A. H., Bowers J. E., Burow M. D., Draye X., Elsik C. G., Jiang C. X., Katsar C. S., Lan T. H., Lin Y. R., Ming R. and Wright R. J. 2000. Comparative genomics of plant chromosomes. Plant Cell, 12: 1523–1539.PubMedGoogle Scholar
  76. Pedersen C. and Langridge P. 1997. Identification of the entire chromosome complement of bread wheat by two-color FISH. Genome, 40: 589–593.PubMedCrossRefGoogle Scholar
  77. Peng J. R., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., Beales J., Fish L. J., Worl and A. L., Pelica F., Sudhakar D., Christou P., Snape J. W., Gale M. D. and Harberd N. P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400: 256–261.PubMedCrossRefGoogle Scholar
  78. Qui Y. L., Lee J., Bernasconl-Quadronl F., Solttis D. E., Solttis P. S., Zanis M., Zimmer E. A., Chen Z., Savolainen V. and Chase M. W. 1999. The earliest angiospersm: Evidence from mitochondrial, plastid and nuclear genomes. Nature, 25: 404–406.Google Scholar
  79. Rahman S., Abrahams S., Abbott D., Mukai Y., Samuel M., Morell M. and Appels R. 1997. A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome, 40: 465–474.PubMedCrossRefGoogle Scholar
  80. Rayburn A. L. and Gill B. S. 1985. Use of biotin-labelled probes to map specific DNA sequences on wheat chromosomes. J. Hered., 76: 78–81.Google Scholar
  81. Rayburn A. L. and Gill B. S. 1986. Molecular identification of the D-genome chromosomes of wheat. J. Hered., 77: 253–255.Google Scholar
  82. Ried T., Baldini A., R and T. C. and Ward D. C. 1992. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci., USA, 89: 1388–1392.Google Scholar
  83. Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W. and Phillips R. L. 2000. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 156: 327–339.PubMedGoogle Scholar
  84. Sandery M. J., Forster J., Macadam S. R., Blunden R., Jones R. N. and Brown S. D. M. 1991. Isolation of a specific common to A-and B-chromosomes of rye (Secale cereale) by microcloning. Plant Mol. Biol. Rep., 9: 21–30.CrossRefGoogle Scholar
  85. Sasaki T. et al. 2002. The genome sequence and structure of rice chromosome 1. Nature, 420: 312–316.PubMedCrossRefGoogle Scholar
  86. Schondelmaier J., Martin R., Jahoor A., Houben A., Graner A., Koop H. U., Herrmann R. G. and Jung C. 1993. Microdissection and microcloning of the barley (Hordeum vulgare L. ) Chromosome 1HS. Theor. Appl. Genet., 86: 629–636.CrossRefGoogle Scholar
  87. Schrock E., Du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M. M. A., Ning Y., Ledbetter D. H., Bar-Am I., Soenksen D., Garini Y. and Ried T. 1996. Multicolor spectral karyotyping of human chromosomes. Science, 273: 494–497.PubMedCrossRefGoogle Scholar
  88. Schwartz D. C. and Cantor C. R. 1984. Separation of yeast chromosome — sized DNA by pulse field gradient gel electrophoresis. Cell, 37: 67–75.PubMedCrossRefGoogle Scholar
  89. Schwarzacher T., Leitch A. R., Bennett M. D. and Heslop-Harrison J. S. 1989. In situ localization of parental genomes in a wide hybrid. Ann. Bot., 64: 315–324.Google Scholar
  90. Shaked H., Kaushkush K., Ozkan H., Feldman M. and Levy A. A. 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridisation and allopolyploidy in wheat. Plant Cell, 13: 1749–1759.PubMedGoogle Scholar
  91. Shen D. L., Wang Z. F. and Wu M. 1987. Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma, 95: 311–314.CrossRefGoogle Scholar
  92. Shirasu K., Schulman A. H., Lahaye T. and Schulze-Lefert P. 2000. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 10: 908–915.PubMedCrossRefGoogle Scholar
  93. Solttis P. S., Solttis D. E. and Chase M. W. 1999. Angiosperms phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 25: 402–404.CrossRefGoogle Scholar
  94. Sorokin A., Marthe F., Houben A., Pich U. and Graner A. 1994. Polymerase chain reaction mediated localization of RFLP clones to microisolated translocation chromosomes of barley. Genome, 37: 550–555.PubMedCrossRefGoogle Scholar
  95. Stein N., Ponelies N., Musket T., McMullen M. and Weber G. 1998. Chromosome microdissection and region specific libraries from pachytene chromosomes of maize (Zea mays L. ). Plant J., 13: 281–289.CrossRefGoogle Scholar
  96. Stein N., Feuillet C., Wicker T., Schlagenhauf E. and Keller B. 2000. Sub genome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L. ). Proc. Natl. Acad. Sci., USA, 97: 13436–14441.PubMedCrossRefGoogle Scholar
  97. TAGI. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.CrossRefGoogle Scholar
  98. Tarchini R., Biddle P., Winel and R., Tingey S. and Rafalski A. 2000. The complete sequence of 340 kb of DNA around the rice Adhl-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 12: 381–391.PubMedGoogle Scholar
  99. Tikhonov A. P., Sanmiguel P. J., Nakajima Y., Gorestein N. M., Bennetzen J. L. and Avramova Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci., USA, 96: 7409–7414.Google Scholar
  100. Trask B., Pinkel D. and Van den Engh G. 1989. The proximity of DNA sequences in interphase cell nuclei correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics, 5: 710–717.PubMedCrossRefGoogle Scholar
  101. Vega J. M., Abbo S., Feldman M. and Levy A. A. 1994. Chromosome painting in plants: In situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc. Natl. Acad. Sci., USA, 91: 12041–12045.Google Scholar
  102. Vosa C. G. 1970. Heterochromatin recognition with fluorochromes. Chromosoma, 30: 366–371.CrossRefGoogle Scholar
  103. Wang M. L., Atkinson M. D., Chinoy C. N., Devos K. M. and Gale M. D. 1992. Comparative RFLP-based genetic maps of barley chromosome 5 (1H) and rye chromosome 1R. Theor. Appl. Genet., 84: 339–344.CrossRefGoogle Scholar
  104. Wang R. L., Stec A. O., Hey J., Lukens L. and Doebley J. 1999. The limits of selection during maize domestication. Nature, 398: 236–239.PubMedCrossRefGoogle Scholar
  105. Wang Z. M., Le Thierry D’Ennequin M., Panaud O., Gale M. D., Sarr A. and Devos K. M. 2001. Trait mapping in foxtail millet. Science, 290: 2114–2117.Google Scholar
  106. Wei F., Gobelman-Werner K., Morroll S. M., Kurth J., Mao L., Wing R. A., Leister D. M., Schulze-Lefert P. and Wise R. P. 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics, 153: 1929–1948.PubMedGoogle Scholar
  107. Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E. and Keller B. 2001. Analysis of contiguous 211 kb sequence in diploid wheat (Triticum monococcum L. ) reveals multiple mechanisms of genome evolution. Plant J., 26: 307–316.PubMedCrossRefGoogle Scholar
  108. Wiegant J., Kalle W., Mullenders L., Brookes S., Hoovers J. M. N., Dauwerse J. G., Van Ommen G. J. B. and Raap A. K. 1992. High resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet., 1: 587–591.PubMedCrossRefGoogle Scholar
  109. Woese C. R. 2000. Interpreting the universal phylogenetic tree. PNAS, USA, 97: 8392–8396.CrossRefGoogle Scholar
  110. Zhong X., De Jong J. H. and Zabel P. 1996. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res., 4: 24–28.PubMedCrossRefGoogle Scholar
  111. Zhou Y., Hu Z., Dang B., Wang H., Deng X., Wang L. and Chen Z. 1999. Microdissection and microcloning of rye (Secale cereale L) chromosome 1R. Chromosoma, 108: 250–255.PubMedCrossRefGoogle Scholar
  112. Zwick M. S., Islam-Faridi M. N., Czeschin Jr. D. J., Wing R. A., Hart G. E., Stelly D. M. and Price H. J. 1998. Physical mapping of the liguleless group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics, 148: 1983–1992.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • P. K. Gupta
    • 1
  • M. K. Dhar
    • 2
  1. 1.Ch. Charan Singh UniversityMeerutIndia
  2. 2.University of JammuJammuIndia

Personalised recommendations