Chromosome Manipulations for Crop Improvement

  • D. S. Brar
  • H. S. Dhaliwal

Abstract

The parallelism established between Mendel’s laws of inheritance and chromosomal theory of inheritance during 1900-1904 laid the foundation of cytogenetics. Later, a series of cytogenetic stocks such as monosomics, trisomics, haploids, autotetraploids, synthetic and extracted aloploids, alien chromosome addition and substitution lines were developed in several crops Advances were also made in molecular cytogenetic techniques such as chromosome banding, chromosome image analyzing systems, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) including fiber-FISH, micro-dissection of chromosomes, flow sorting of chromosomes, and, more recently, in developing artificial plant chromosomes. Cytogenetic stocks have been characterized genetically and cytologically and are being ‘used in construction of molecular, genetic, physical and comparative maps. Several breeding lines have been developed and varieties released through haploidy breeding. Autotetraploids have been produced in numerous crops. A large number of interspecific hybrids and amphiploids have been produced. Alloploid breeding involving crosses between natural diploid/polyploids × synthetic alloploids and manipulation of alien addition and substitution lines have met with great success. Several useful genes have been transferred utilizing cytogenetical tools for resistance to diseases, insects, abiotic stresses, CMS sources and quality traits in wheat, oats, cotton, rice, Brassica and other horticultural species. Genes for cyst nematode and BYDV resistance have been introgressed through tissue culture induced chromosomal exchanges. FISH has been employed in numerous studies to characterize alien segments. Integration of chromosome manipulation techniques and molecular cytogenetic techniques with structural and functional genomics is essential to solve some of the plant breeding problems.

Keywords

Bacterial Artificial Chromosome Durum Wheat Rust Resistance Alien Chromosome Human Artificial Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi F. M., Brar D. S., Carpena A. L., Fukui K. and Khush G. S. 1999. Detection of autosyndetic and allosyndetic pairing among A and E genomes of Oryza through genomic in situ hybridization. Rice Genet. Newsl., 16: 24–25.Google Scholar
  2. Aggarwal R. K., Brar D. S. and Khush G. S. 1997. Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol. Gen. Genet., 254: 1–12.PubMedCrossRefGoogle Scholar
  3. Aghaee-Sarbarzeh M., Singh H. and Dhaliwal H. S. 2000. ph1 gene derived from Aegilops speltoides induces homologous chromosome pairing in wide crosses of Triticum aestivum. J. Hered., 536–5163.Google Scholar
  4. Ahloowalia B. S. 1983. Spectrum of variation in somaclones of triploid rye grass. Crop Sci., 23: 1141–1147.CrossRefGoogle Scholar
  5. Ahn S., Anderson J. A., Sorrells M. E. and Tanksley S. D. 1993. Homoeologous relationship of rice, wheat and maize chromosomes. Mol. Gen. Genet., 241: 483–490.PubMedCrossRefGoogle Scholar
  6. Almouslem A. B., Jauhar P. P., Peterson T. S., Bommineni V. R. and Rao M. B. 1998. Haploid durum wheat production via hybridization with maize. Crop Sci., 38: 1080–1087.CrossRefGoogle Scholar
  7. Ananiev E. V., Lizarazu O. R., Rines H. W. and Phillips R. L. 1997. Oat-maize chromosome addition lines: A new system for mapping the maize genome. Proc. Natl. Acad. Sci., USA, 94: 3524–3529.PubMedCrossRefGoogle Scholar
  8. Ananiev E. V., Phillips R. L. and Rines W. H. 1998. Chromosome-specific molecular organization of maize (Zea mays L. ). centromeric regions. Proc. Natl. Acad. Sci., USA, 95: 13073–13078.PubMedCrossRefGoogle Scholar
  9. Aung T. and Thomas H. 1976. Transfer of mildew resistance from the wild oat, Avena barbata into cultivated oat. Nature, 260: 603–604.CrossRefGoogle Scholar
  10. Banks P. M., Larkin P. J., Bariana H. S., Lagudah E. S., Appels R., Waterhouse P. M., Bretteil R. I. S., Chen X., Xu HJ., Xin Z. Y., Qian Y. T., Zhou X. M., Cheng Z. M. and Zhou G. H. 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 38: 395–405.PubMedCrossRefGoogle Scholar
  11. Begona F. C., Benavente E. and Orellana J. 1995. Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C-banding: A comparative analysis. Chromosoma, 103: 554–558.Google Scholar
  12. Bonierbale M. W., Plaisted R. L. and Tanksley S. D. 1988. RFLP maps based on a common set of clones reveal, modes of chromosomal evolution in potato and tomato. Genetics, 120: 1095–1103.PubMedGoogle Scholar
  13. Boveri Th. 1902. Über mehrpolige Mitosen als Mittel Zur Analyse der Zellkerns. Verh. Phys. -med. Ges., 35: 67–90.Google Scholar
  14. Brar D. S., Dalmacio R., Elloran R., Aggarwal R. K., Angeles R. and Khush G. S. 1996. Gene transfer and molecular characterization of introgression from wild Oryza species into rice. In: Rice Genetics III. International Rice Research Institute, Manila, Philippines, pp. 477–486.Google Scholar
  15. Brar D. S., Minocha J. L. and Gill B. S. 1973. Translocations in Pennisetum typhoides involving all the chromosomes in one complex. Curr. Sci., 42: 653–654.Google Scholar
  16. Brar D. S. and Khush G. S. 1986. Wide hybridization and chromosome manipulation in cereals, pp. 221–263. In: Handbook of Plant Cell Culture, Vol. 4. Techniques and Applications. (eds). D. A. Evans, W. R. Sharp, P. V. Ammirato. MacMillan Publ. Co., New York.Google Scholar
  17. Brar D. S. and Khush G. S. 1997. Alien introgression in rice. Plant Mol. Biol., 35: 35–47.PubMedCrossRefGoogle Scholar
  18. Burnham C. R. 1946. An “Oenothera” or multiple translocation method of establishing homozygous lines. J. Amer. Soc. Agron., 38: 702–707.CrossRefGoogle Scholar
  19. Burnham C. R. 1962. Discussions in Cytogenetics. Burgess Publishing Company, pp. 375.Google Scholar
  20. Cai X., Jones S. S. and Murray T. D. 2001. Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breed., 120: 21–26.CrossRefGoogle Scholar
  21. Cheng Z. K., Yan H. H., Yu H. X., Tang S., Jiang J., Gu M. and Zhu L. H. 2001. Development and applications of a complete set of rice telotrisomics. Genetics, 157: 361–368.PubMedGoogle Scholar
  22. Crasta O. R., Francki M. G., Bucholtz D. B., Sharma H. C., Zhang J., Wang R. C., Ohm H. W. and Anderson J. M. 2000. Identification and characterization of whet-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance. Genome, 43: 698–706.PubMedCrossRefGoogle Scholar
  23. Dahleen L. S. 1999. Tissue culture increases meiotic pairing of regenerants from barley × canada wild rye hybrids. J. Heredity, 90: 265–269.CrossRefGoogle Scholar
  24. Desel C., Jung C., Cai D., Kleine M. and Schmidt T. 2001. High-resolution mapping of YACs and the single-copy gene HsI, Pro-I on Beta vulgaris chromosomes by multi-color fluorescence in situ hybridization. Plant Mol. Biol., 45: 113–122.PubMedCrossRefGoogle Scholar
  25. Devos K. M. and Gale M. D. 1997. Comparative genetics in the grasses. Plant Mol. Biol., 35: 3–15.PubMedCrossRefGoogle Scholar
  26. Dhaliwal H. S., Friebe B., Gill K. S. and Gill B. S. 1990. Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat. Theor. Appl. Genet., 79: 769–774.CrossRefGoogle Scholar
  27. Dhaliwal H. S., Gill B. S. and Waines J. G. 1977. Analysis of induced homoeologous pairing in a Ph mutant wheat × rye hybrid. J. Hered., 68: 207–209.Google Scholar
  28. Dhaliwal H. S., Multani D. S. and Singh B. B. 1987. Identification of rye and barley chromosomes carrying resistance to Karnal bunt of wheat (Neovossia indica). Cereal Res. Comm., 15: 191–194.Google Scholar
  29. Dhaliwal H. S., Singh H. and William M. 2002. Transfer of rust resistance from Aegilops ovuta into bread wheat (Triticum aestivum L. ) and molecular characterization of resistant derivatives. Euphytica, 126: 153–159.CrossRefGoogle Scholar
  30. Dogramaci-Altuntepe M. and Jauhar P. P. 2001. Production of durum wheat substitution haploids from durum × maize crosses and their cytological characterization. Genome, 44: 137–142.PubMedCrossRefGoogle Scholar
  31. Doi K., Iwata N. and Nishimura Y. 1997. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud. ) in the background of japonica rice (O. sativa L. ). Rice Genet. Newsl., 14: 39–40.Google Scholar
  32. Dong F., Song J., Naess S. K., Helgeson J. P., Gabhardt C. and Jiang J. 2000. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor. Appl. Genet., 101: 1001–1007.CrossRefGoogle Scholar
  33. Dover G. A. and Riley R. 1972. The prevention of pairing of homoeologous meiotic chromosomes of wheat by a genetic activity of supernumerary chromosomes of Aegilops. Nature, 240: 159–161.CrossRefGoogle Scholar
  34. Driscoll C. J. 1972. X, Y, Z system of producing hybrid wheat. Crop Sci., 12: 516–517.CrossRefGoogle Scholar
  35. Dvorak J. and Dubcovsky J. 1995. Recombination between homoeologous chromosomes in wheat in the absence of the Phl locus. pp 64–75. In: Classical and Molecular Cytogenetic Analysis. (eds. ) Raupp W. J. and Gill B. S., Kansas State University, Manhattan.Google Scholar
  36. Endo T. R. and Gill B. S. 1996. The deletion stocks of common wheat. J. Hered., 87: 295–307.Google Scholar
  37. Fisher J. A. and Martin R. 1974. Kite, Condor and Egret — three new wheats. Agric. Gaz. NSW, 85: 10–13.Google Scholar
  38. Flemming W. 1982. Introduction Cited in Cytology and Cytogenetics by C. P. Swanson (1957). Prentice Hall Inc., New Jersey, pp. 1–13.Google Scholar
  39. Friebe B., Hatchett J. H., Gill B. S., Mukai Y. and Sebesta E. E. 1991. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet., 83: 33–40.CrossRefGoogle Scholar
  40. Friebe B., Mukai Y., Gill B. S. and Cauderon Y. 1992. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor. Appl. Genet., 84: 899–905.CrossRefGoogle Scholar
  41. Friebe B., Jiang J., Gill B. S. and Dyck P. L. 1993. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet., 86: 141–149.CrossRefGoogle Scholar
  42. Friebe B., Jiang J., Raupp W. J., Mcintosh R. A. and Gill B. S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica, 91: 59–87.CrossRefGoogle Scholar
  43. Friebe B., Kynast R. G., Hatchett J. H., Sears R. G., Wilson D. L. and Gill B. S. 1999. Transfer of rye derived Hessian fly resistance genes H21 and H25 from bread wheat into durum wheat. Crop Sci., 39: 1692–1696.CrossRefGoogle Scholar
  44. Fukui K. and Ijima K. 1991. Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet., 81: 589–596.CrossRefGoogle Scholar
  45. Galinat W. C. 1977. The origin of corn. In: Corn and Corn Improvement, (ed. ) G. F. Sprague.Google Scholar
  46. Gall J. G. and Pardue M. L. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparation. Proc. Natl. Acad. Sci., USA, 63: 378–383.PubMedCrossRefGoogle Scholar
  47. Gao D., Guo D. and Jung C. 2001. Monosomic addition lines of Beta corolliflora Zoss in sugarbeet: Cytological and molecular marker analysis. Theor. Appl. Genet., 103: 240–247.CrossRefGoogle Scholar
  48. Garriga-Caldere F., Huigen D. J., Angrisano A., Jacobsen E. and Ramanna M. S. 1998. Transmission of alien tomato chromosomes from BC1 to BC2 progenies derived from backcrossing potato (+) tomato fusion hybrids to potato: The selection of single additions for seven different tomato chromosomes. Theor. Appl. Genet., 96: 155–163.CrossRefGoogle Scholar
  49. Garriga-Caldere F., Huigen D. J., Jacobsen E. and Ramanna M. S. 1999. Prospects for introgressing tomato chromosomes into the potato genome: An assessment through GISH analysis. Genome, 42: 282–288.CrossRefGoogle Scholar
  50. Gavrilenko T., Thieme R. and Rokka V. M. 2001. Cytogenetic analysis of Lycopersicon esculentum ( + ) Solanum tuberosum somatic hybrids and their androgenetic regenerants. Theor. Appl. Genet., 103: 231–239.CrossRefGoogle Scholar
  51. Gerstel D. U. 1945. Inheritance in Nicotiana tabacum II. The addition of Nicotiana glutinosa chromosomes to tobacco. J. Hered., 36: 197–206.Google Scholar
  52. Gill B. S. and Kimber G. 1974. Giemsa C-banding karyotype of rice. Proc. Natl. Acad. Sci., USA, 71: 1247–1249.PubMedCrossRefGoogle Scholar
  53. Gill K. S. and Gill B. S. 1991. A DNA fragment mapped within the submicroscopic deletion of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics, 129: 257–259.PubMedGoogle Scholar
  54. Giorgi B. and Cuozzo L. 1980. Homoeologous pairing in a ph mutant of tetraploid wheat crossed with rye. Cereal Res. Comm., 8: 485–490.Google Scholar
  55. Giorgi B. and Barbera F. 1981. Use of mutants that affect homoeologous pairing for introducing alien variation in both durum and common wheat. In: Induced mutations — a tool in plant research. IAEA, Vienna, pp. 37–47.Google Scholar
  56. Griffiths N. and Thomas H. 1983. Gene transfer. In: Annual Report for 1982 Welsh Plant Breeding Station, Aberstwyth, UK, pp. 145–146.Google Scholar
  57. Gupta P. K. 1984. Role of loss of the rye heterochromatin in improvement of hexaploid triticale. The Nucleus, 27: 100–107.Google Scholar
  58. Gupta P. K. 1999. Cytogenetics. Rastogi Publications, Meerut, India, pp. 418.Google Scholar
  59. Hagberg A. and Hagberg G. 1980. High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas, 93: 341–343.CrossRefGoogle Scholar
  60. Hagberg A. and Hagberg G. 1987. Some vigorous and productive duplications in barley, pp. 423–426. In: Barley Genetics, (eds). V. S. Yasuda and T. Konishi. Okayama, Japan.Google Scholar
  61. Haider Ali S. N., Ramanna M. S., Jacobson E. and Visser R. G. F. 2001. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor. Appl. Genet., 103: 687–695.CrossRefGoogle Scholar
  62. Harrington J. J. 1997. Formation of de novo centromeres and construction of first-generation human artificial chromosomes. Nature Genetics, 15: 345–355.PubMedCrossRefGoogle Scholar
  63. Ho K. M. and Kasha K. J. 1975. Genetic control of chromosome eliminating during haploid formation in barley. Genetics, 81: 263–275.PubMedGoogle Scholar
  64. Inagaki M. N. and Hash C. T. 1998. Production of haploids in bread wheat, durum wheat and hexaploid triticale crossed with pearl millet. Plant Breeding, 117: 485–487.CrossRefGoogle Scholar
  65. Islam A. K. M. R. and Shepherd K. W. 1992. Production of wheat-barley recombinant chromosomes through induced homocologous pairing. I. Isolationof recombinants involving barley arms 3HL and 6HL. Theor. Appl. Genet., 83: 489–494.CrossRefGoogle Scholar
  66. Jauhar P. P. 1975. Genetic control of diploid like meiosis in hexaploid tall fescue. Nature, 254: 595–597.PubMedCrossRefGoogle Scholar
  67. Jauhar P. P. and Peterson T. S. 2000. Hybrids between durum wheat and Thinopyrum junceiforme: Prospects for breeding for scab resistance. Euphytica, 00: 1–10.Google Scholar
  68. Jauhar P. P., Dogramaci-Altuntepe M., Peterson T. S. and Almouslem A. B. 2000. Seedset on synthetic haploids of durum wheat: Cytological and molecular investigations. Crop Sci., 40: 1742–1749.CrossRefGoogle Scholar
  69. Jena K. K., Khush G. S. and Kochert G. 1994. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. sativa. Genome, 37: 382–389.CrossRefGoogle Scholar
  70. Jiang J., Friebe B., Dhaliwal H. S., Martin T. J. and Gill B. S. 1993. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet., 86: 41–48.CrossRefGoogle Scholar
  71. Jiang J., Friebe B. and Gill B. S. 1994. Recent advances in alien gene transfer in wheat. Euphytica, 73: 199–212.CrossRefGoogle Scholar
  72. Jiang J., Morris K. L. D. and Gill B. S. 1994. Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Res., 2: 3–13.PubMedCrossRefGoogle Scholar
  73. Jiang J., Gill B. S., Wang G. L., Ronald P. C. and Ward D. C. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci., USA, 92: 4487–4491.PubMedCrossRefGoogle Scholar
  74. Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S. and Ward D. C. 1996. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Natl. Acad. Sci., USA, 93: 14210–14213.Google Scholar
  75. Kawahara T. and Taketa S. 2001. Fixation of translocation 24. 4B infers the monophyletic origin of Ethiopian tetraploid wheat. Theor. Appl. Genet., 101: 705–710.CrossRefGoogle Scholar
  76. Kennard W., Phillips R., Porter R. and Grambacher A. 1999. A comparative map of wild rice (Zizania palustris 2n = 2x = 30). Theor. Appl. Genet., 99: 793–799.CrossRefGoogle Scholar
  77. Khush G. S. and Rick C. M. 1967. Studies on the linkage map of chromosome 4 of the tomato and on transmission of induced deficiencies. Genetica, 38: 74–94.CrossRefGoogle Scholar
  78. Khush G. S. 1973. Cytogenetics of aneuploids. Academic Press, New York, pp. 301.Google Scholar
  79. Khush G. S. and Brar D. S. 1989. Wide hybridization in plant breeding. In: Plant Breeding and Genetic Engineering (A. H. Zakri ed. ) SABRAO, Malaysia, pp. 141–188.Google Scholar
  80. Khushnir W. and Halloran G. M. 1984. Transfer of high kernel weight and high protein content from wild tetraploid wheat to bread wheat using homologous and homoeologous recombination. Euphytica, 33: 249–256.CrossRefGoogle Scholar
  81. Kihara H. and Tsunewaki K. 1962. Use of alien cytoplasm as a new method of producing haploids. J. Genet., 37: 310–313.Google Scholar
  82. Kjima K., Ohmido T., Hirose T., Mitsui T. and Fukui K. 1999. Visualization of the DNA stretches in a rice genotype by extended DNA fiber-FISH. In: Plant and Animal Genome VII, San Diego, USA, pp. 83.Google Scholar
  83. Knott D. R. 1961. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci., 41: 109–123.CrossRefGoogle Scholar
  84. Kynast R. G., Riera-Lizarazu O., Vales M. I., Okagaki R. J., Maquieira S. B., Chen G., Ananiev E. V., Odl and W. E., Russell C. D., Stec A. O., Livingston S. M., Zaia H. A., Rines H. W. and Phillips R. L. 2001. A complete set of maize individual chromosome additions to the oat genome. Plant Physiol., 125: 1216–1227.PubMedCrossRefGoogle Scholar
  85. Lapitan N. L. V., Sears R. G. and Gill B. S. 1984. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet., 68: 547–554.CrossRefGoogle Scholar
  86. Larkin P. J., Banks P. M., Bhati R., Bretteil R. I. S., Davies P. A., Ryan S. A., Scowcroft W. R., Spindler L. H. and Tanner G. J. 1989. From somatic variation to variant plants: Mechanisms and applications. Genome, 31: 705–71Google Scholar
  87. Laurie D. A., O’Donoughue L. S. and Bennett M. D. 1990. Wheat × maize and other wide sexual hybrids: Their potential for genetic manipulation and crop improvement. pp. 95–126. In: Gene manipulation in plant improvement IL (ed. ) J. P. Gustafson. 19th Stadler Genetics Symposium. Plenum Press, New York.CrossRefGoogle Scholar
  88. Law C. N., Snape J. W. and Worl and A. J. 1981. Intraspecific chromosome manipulation. Phil Trans. R. Soc., Lond., 292: 509–518.CrossRefGoogle Scholar
  89. Li HJ., Guo B. H., Li Y. W., Du L. Q., Jia X. and Chu C. C. 2000. Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L. ) and Dasypyrum villosum arising from tissue culture. Genome, 43: 756–762.PubMedGoogle Scholar
  90. McClintock B. 1950. The origin and behaviour of mutable loci in maize. Proc. Natl. Acad. Sci., USA, 36: 344–355.PubMedCrossRefGoogle Scholar
  91. McCouch S. R., Kochert G., Yu Z. H., Wang Z. Y., Khush G. S., Coffman W. R. and Tanksley S. D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet., 76: 815–829.CrossRefGoogle Scholar
  92. Mendel G. 1865. Versuche über Pflanzen-Hybriden. Verh. Naturf Orshung Ver. In Brüm Verh., 4: 3–47.Google Scholar
  93. Molnar-Lang M., Linc G., Logojan A. and Sutka J. 2000. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome, 43: 1045–1054.PubMedGoogle Scholar
  94. Morgan W. G., King T. P., Koch S., Harper J. A. and Thomas H. 2001. Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridization. Theor Appl. Genet., 103: 696–701.CrossRefGoogle Scholar
  95. Mujeeb-Kazi A. and Jewell D. C. 1985. CIMMYT’s wide cross program for wheat and maize improvement. In: Biotechnology in International Agricultural Research. International Rice Research Institute, Manila, Philippines, pp. 219–226.Google Scholar
  96. Mukai Y., Fribe B., Hatchett M., Yamamoto M. and Gill B. S. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosama, 102: 88–95.CrossRefGoogle Scholar
  97. Okagaki R. J., Kynast R. G., Livingston S. M., Russell C. D., Rines H. W. and Phillips R. L. 2001. Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol, 125: 1228–1235.PubMedCrossRefGoogle Scholar
  98. Okamoto M. 1957. Asynaptic effect of chromosome V. Wheat Information Service 5: 6.Google Scholar
  99. O’mara J. G. 1940. Cytogenetic studies on Triticinae. I. A method for determining the effect of individual Secale chromosomes on Triticum. Genetics, 25: 401–408.Google Scholar
  100. Orton T. J. 1980. Haploid barley regenerated from callus cultures of Hordeum vulgare × H. jubatum. J. Hered., 71: 780–782.Google Scholar
  101. Park S. J., Walsh E. J., Reinbergs E., Song L. S. P. and Kasha K. J. 1976. Field performance of doubled haploid barley lines in comparison with lines.Google Scholar
  102. Peloquin S. J., Hougas R. W. and Gabert A. C. 1964. Haploidy as a new approach to the cytogenetics and breeding of Solanum tuberosum. p. 21–28. In: Chromosome manipulations and plant genetics. (eds. ) R. Riley and K. R. Lewis, Oliver and Boyd Ltd., London.Google Scholar
  103. Pickering R. A., Malyshev S., Kunzel G., Johnston P. A., Korzun V., Menke M. and Schubert I. 2000. Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet., 100: 27–31.CrossRefGoogle Scholar
  104. Rajaram S., Maan E. E., Ortiz-Ferrara G. and Mujeeb-Kazi A. 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sixth Intern. Wheat Genet. Symp., Kyoto, Japan, pp. 613–621.Google Scholar
  105. Ramage R. T. 1965. Balanced tertiary trisomics for use in hybrid seed production. Crop Sci., 5: 177–178.CrossRefGoogle Scholar
  106. Rayburn A. L. and Gill B. S. 1985. Use of biotin labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered., 16: 78–81.Google Scholar
  107. Rhoades M. M. 1936. A cytogenetic study of a chromosome fragment in maize. Genetics, 21: 491–502.PubMedGoogle Scholar
  108. Riera-Lizarazu O., Rines H. W. and Phillips R. L. 1996. Cytological and molecular characterization of oat × maize partial hybrids. Theor. Appl. Genet., 93: 123–125.CrossRefGoogle Scholar
  109. Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W. and Phillips R. L. 2000. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 156: 327–339.PubMedGoogle Scholar
  110. Riley R., Chapman V. and Johnson R. 1968. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 217: 383–384.CrossRefGoogle Scholar
  111. Roman H. and Ullstrup A. J. 1952. The use of A-B translocations to locate genes in maize. Agron. Jour., 43: 450–454.CrossRefGoogle Scholar
  112. Rosenfeld M. 1997. Human artificial chromosomes get real. Nature Genetics, 15: 333–335.PubMedCrossRefGoogle Scholar
  113. Sachan J. K. S. and Tanaka R. 1977. Variation and pattern of C-banding in Zea chromosomes. Nucleus, 20: 61–64.Google Scholar
  114. Sakaguchi S. and Nishimura Y. 1969. Breeding seedless watermelon by using induced chromosome translocations. Jarq., 3: 18–22.Google Scholar
  115. Scalenghe F., Tureo E., Edstrom J. E. and Pirotta V. 1981. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosama, 82: 205–216.CrossRefGoogle Scholar
  116. Schwarzacher T., Anamthawat-Jonsson K., Harrison G. E., Islam A. K. M. R., Jia J. Z., King I. P., Leitch A. R., Miller T. E., Reader S. M., Rogers W. J., Shi M. and Heslop-Harrison J. S. 1992. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet., 84: 778–786.CrossRefGoogle Scholar
  117. Sears E. R. 1953. Nullisomic analysis in common wheat. Amer. Nat., 87: 245–252.CrossRefGoogle Scholar
  118. Sears E. R. 1954. The aneuploids of common wheat. Res. Bull, Mo. Agr. Exp. Stn., 572, 59pp.Google Scholar
  119. Sears E. R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven. Symp. Biol., 9: 1–22.Google Scholar
  120. Sears E. R. 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. p. 29–45. In: Chromosome manipulations and plant genetics. (eds. ) R. Riley and K. W. Lewis, Oliver and Boyd Ltd., London, London.Google Scholar
  121. Sears E. R. 1972. Chromosome engineering in wheat. Stadler Genet. Symp., 4: 23–38.Google Scholar
  122. Sears E. R. 1973. Agropyron-wheat transfers induced by homoeologous pairing. In: 4th Intern. Wheat Genet. Symp., Columbia. pp. 191–199.Google Scholar
  123. Sears E. R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol., 19: 585–593.Google Scholar
  124. Sherman J. D., Smith L. Y., Blake T. K. and Talbert L. E. 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 44: 38–44.PubMedCrossRefGoogle Scholar
  125. Singh K., Ishii T., Parco A., Huang N., Brar D. S. and Khush G. S. 1996a. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L. ). Proc. Natl. Acad. Sci., 93: 6163–6168.PubMedCrossRefGoogle Scholar
  126. Singh K., Multani D. S. and Khush G. S. 1996b. Origin, characterization, and use in determining the orientation of chromosome map. Genetics, 143: 517–529.PubMedGoogle Scholar
  127. Singh R. J. 1993. Plant Cytogenetics. CRC Press, Boca Raton, pp. 391.Google Scholar
  128. Snowdon R. J., Friedrich T., Friedt W. and Kohler W. 2002. Identifying the chromosomes of the A-C-genome diploid Brassica species. B. rapa (Syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor. Appl. Genet., 104: 533–538.PubMedCrossRefGoogle Scholar
  129. Sutton W. S. 1903. The chromosomes in heredity. Biol. Bull., 4: 231–251.CrossRefGoogle Scholar
  130. Sutton W. S. and Boveri T. 1903. An appraisal. Cited in Cytogenetics by C. P. Swanson, T. Merz, W. J. Yong (1967). Prentice Hall Inc., New Jersey, pp. 1–7.Google Scholar
  131. Swaminathan M. S. 1951. Notes on induced polyploids in the tuber-bearing Solanum species and their crossability with S. tuberosum. Amer. Potato Jour., 28: 472–489.CrossRefGoogle Scholar
  132. Szabados L., Hadlaczky G. and Dudits D. 1981. Uptake of isolated plant chromosomes by plant protoplasts. Planta, 151: 141–145.CrossRefGoogle Scholar
  133. Thomas H., Leggett M. and Jones LT. 1975. The addition of a pair of chromosomes of the wild oat, Avena barabta (2n = 28) to the cultivated oat, A. sativa L. (2n = 42). Euphytica, 24: 717–724.CrossRefGoogle Scholar
  134. Thomas H., Powell W. and Aung T. 1980. Interfering with regular mieotic behaviour in Avena sativa as a method of incorporating the gene for mildew resistance from A. barbata. Euphytica, 29: 635–640.CrossRefGoogle Scholar
  135. Unrau J., Person C. and Kuspira J. 1956. Chromosome substitution in hexaploid wheat. Can. J. Bot., 34: 629–640.CrossRefGoogle Scholar
  136. Vrana J., Kubalakova M., Simkova H., Chihalikova J., Lysak M. A. and Dolezel J. 2000. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L. ). Genetics, 156: 2033–2041.PubMedGoogle Scholar
  137. Wall A. M., Riley R. and Chapman V. 1971. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet. Res., 18: 311–328.CrossRefGoogle Scholar
  138. Wang R. C., Liang G. H. and Heyne E. G. 1977. Effectiveness of ph gene in inducing homoeologous pairing in Agrotrichum. Theor. Appl. Genet., 51: 139–141.Google Scholar
  139. Wang W. N., Hang A., Hansen J., Burton C., Mallory-Smith C. A. and Zemetra R. S. 2000. Visualization of A-and B-genome chromosomes in wheat (Triticum aestivum L. ) × jointed goat grass (Aegilops cyclindrica Host) backcross progenies. Genome, 43: 1038–1044.PubMedGoogle Scholar
  140. Watanabe K. N., Orrillo M., Vega S., Golmirzaie A. M., Perez S., Crusado J. and Watanabe J. A. 1996. Generation of pest resistant, diploid potato germplasm with short-day adaptation from diverse genetic stocks. Breed. Sci., 46: 329–336.Google Scholar
  141. Wienhues A. 1965. Cytogenetische Untersuchungen über die chromosomale Grundlage der Rostre-sistenz der Weizensortie Weique. Zuchter, 35: 352–354.Google Scholar
  142. Xin Z. Y., Zhang Z. Y., Chen X., Lin Z. L., Ma Y. Z., Xu HJ., Banks P. M. and Larkin PJ. 2001. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica, 119: 161–165.CrossRefGoogle Scholar
  143. Zeller F. J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: 5th Intern. Wheat Genet. Symp., Columbia, Missouri, pp. 209–222.Google Scholar
  144. Zhong X. B., Bodeau J., Fransz P. F., Williamson V. M., Van Kammen A., De Jong J. H. and Zabel P. 1999. FISH to meiotic pachytene chromosomes of tomato locates the root-know nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively. Theor. Appl. Genet., 98: 365–370.CrossRefGoogle Scholar
  145. Zhong X. B., Fransz P. F., Van-Wennekes E. J., Zabel P., Van Kammen A. and De Jong J. H. 1996. High resolution mapping by fluorescence in situ hybridization to pachytene chromosomes and extended DNA fibres. Plant Mol. Biol. Rep., 14: 232–242.CrossRefGoogle Scholar
  146. Ziolkowski P. A. and Sadowski J. 2002. FISH-mapping of rDNAs and Arabidopsis BAC on pachytene complements of selected Brassicas. Genome, 45: 189–197.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • D. S. Brar
    • 1
  • H. S. Dhaliwal
    • 2
  1. 1.International Rice Research InstituteMetro ManilaPhilippines
  2. 2.Punjab Agricultural UniversityLudhianaIndia

Personalised recommendations