Abstract
The parallelism established between Mendel’s laws of inheritance and chromosomal theory of inheritance during 1900-1904 laid the foundation of cytogenetics. Later, a series of cytogenetic stocks such as monosomics, trisomics, haploids, autotetraploids, synthetic and extracted aloploids, alien chromosome addition and substitution lines were developed in several crops Advances were also made in molecular cytogenetic techniques such as chromosome banding, chromosome image analyzing systems, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) including fiber-FISH, micro-dissection of chromosomes, flow sorting of chromosomes, and, more recently, in developing artificial plant chromosomes. Cytogenetic stocks have been characterized genetically and cytologically and are being ‘used in construction of molecular, genetic, physical and comparative maps. Several breeding lines have been developed and varieties released through haploidy breeding. Autotetraploids have been produced in numerous crops. A large number of interspecific hybrids and amphiploids have been produced. Alloploid breeding involving crosses between natural diploid/polyploids × synthetic alloploids and manipulation of alien addition and substitution lines have met with great success. Several useful genes have been transferred utilizing cytogenetical tools for resistance to diseases, insects, abiotic stresses, CMS sources and quality traits in wheat, oats, cotton, rice, Brassica and other horticultural species. Genes for cyst nematode and BYDV resistance have been introgressed through tissue culture induced chromosomal exchanges. FISH has been employed in numerous studies to characterize alien segments. Integration of chromosome manipulation techniques and molecular cytogenetic techniques with structural and functional genomics is essential to solve some of the plant breeding problems.
Keywords
Bacterial Artificial Chromosome Durum Wheat Rust Resistance Alien Chromosome Human Artificial ChromosomePreview
Unable to display preview. Download preview PDF.
References
- Abbasi F. M., Brar D. S., Carpena A. L., Fukui K. and Khush G. S. 1999. Detection of autosyndetic and allosyndetic pairing among A and E genomes of Oryza through genomic in situ hybridization. Rice Genet. Newsl., 16: 24–25.Google Scholar
- Aggarwal R. K., Brar D. S. and Khush G. S. 1997. Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol. Gen. Genet., 254: 1–12.PubMedCrossRefGoogle Scholar
- Aghaee-Sarbarzeh M., Singh H. and Dhaliwal H. S. 2000. ph1 gene derived from Aegilops speltoides induces homologous chromosome pairing in wide crosses of Triticum aestivum. J. Hered., 536–5163.Google Scholar
- Ahloowalia B. S. 1983. Spectrum of variation in somaclones of triploid rye grass. Crop Sci., 23: 1141–1147.CrossRefGoogle Scholar
- Ahn S., Anderson J. A., Sorrells M. E. and Tanksley S. D. 1993. Homoeologous relationship of rice, wheat and maize chromosomes. Mol. Gen. Genet., 241: 483–490.PubMedCrossRefGoogle Scholar
- Almouslem A. B., Jauhar P. P., Peterson T. S., Bommineni V. R. and Rao M. B. 1998. Haploid durum wheat production via hybridization with maize. Crop Sci., 38: 1080–1087.CrossRefGoogle Scholar
- Ananiev E. V., Lizarazu O. R., Rines H. W. and Phillips R. L. 1997. Oat-maize chromosome addition lines: A new system for mapping the maize genome. Proc. Natl. Acad. Sci., USA, 94: 3524–3529.PubMedCrossRefGoogle Scholar
- Ananiev E. V., Phillips R. L. and Rines W. H. 1998. Chromosome-specific molecular organization of maize (Zea mays L. ). centromeric regions. Proc. Natl. Acad. Sci., USA, 95: 13073–13078.PubMedCrossRefGoogle Scholar
- Aung T. and Thomas H. 1976. Transfer of mildew resistance from the wild oat, Avena barbata into cultivated oat. Nature, 260: 603–604.CrossRefGoogle Scholar
- Banks P. M., Larkin P. J., Bariana H. S., Lagudah E. S., Appels R., Waterhouse P. M., Bretteil R. I. S., Chen X., Xu HJ., Xin Z. Y., Qian Y. T., Zhou X. M., Cheng Z. M. and Zhou G. H. 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 38: 395–405.PubMedCrossRefGoogle Scholar
- Begona F. C., Benavente E. and Orellana J. 1995. Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C-banding: A comparative analysis. Chromosoma, 103: 554–558.Google Scholar
- Bonierbale M. W., Plaisted R. L. and Tanksley S. D. 1988. RFLP maps based on a common set of clones reveal, modes of chromosomal evolution in potato and tomato. Genetics, 120: 1095–1103.PubMedGoogle Scholar
- Boveri Th. 1902. Über mehrpolige Mitosen als Mittel Zur Analyse der Zellkerns. Verh. Phys. -med. Ges., 35: 67–90.Google Scholar
- Brar D. S., Dalmacio R., Elloran R., Aggarwal R. K., Angeles R. and Khush G. S. 1996. Gene transfer and molecular characterization of introgression from wild Oryza species into rice. In: Rice Genetics III. International Rice Research Institute, Manila, Philippines, pp. 477–486.Google Scholar
- Brar D. S., Minocha J. L. and Gill B. S. 1973. Translocations in Pennisetum typhoides involving all the chromosomes in one complex. Curr. Sci., 42: 653–654.Google Scholar
- Brar D. S. and Khush G. S. 1986. Wide hybridization and chromosome manipulation in cereals, pp. 221–263. In: Handbook of Plant Cell Culture, Vol. 4. Techniques and Applications. (eds). D. A. Evans, W. R. Sharp, P. V. Ammirato. MacMillan Publ. Co., New York.Google Scholar
- Brar D. S. and Khush G. S. 1997. Alien introgression in rice. Plant Mol. Biol., 35: 35–47.PubMedCrossRefGoogle Scholar
- Burnham C. R. 1946. An “Oenothera” or multiple translocation method of establishing homozygous lines. J. Amer. Soc. Agron., 38: 702–707.CrossRefGoogle Scholar
- Burnham C. R. 1962. Discussions in Cytogenetics. Burgess Publishing Company, pp. 375.Google Scholar
- Cai X., Jones S. S. and Murray T. D. 2001. Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat-Thinopyrum amphiploids. Plant Breed., 120: 21–26.CrossRefGoogle Scholar
- Cheng Z. K., Yan H. H., Yu H. X., Tang S., Jiang J., Gu M. and Zhu L. H. 2001. Development and applications of a complete set of rice telotrisomics. Genetics, 157: 361–368.PubMedGoogle Scholar
- Crasta O. R., Francki M. G., Bucholtz D. B., Sharma H. C., Zhang J., Wang R. C., Ohm H. W. and Anderson J. M. 2000. Identification and characterization of whet-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance. Genome, 43: 698–706.PubMedCrossRefGoogle Scholar
- Dahleen L. S. 1999. Tissue culture increases meiotic pairing of regenerants from barley × canada wild rye hybrids. J. Heredity, 90: 265–269.CrossRefGoogle Scholar
- Desel C., Jung C., Cai D., Kleine M. and Schmidt T. 2001. High-resolution mapping of YACs and the single-copy gene HsI, Pro-I on Beta vulgaris chromosomes by multi-color fluorescence in situ hybridization. Plant Mol. Biol., 45: 113–122.PubMedCrossRefGoogle Scholar
- Devos K. M. and Gale M. D. 1997. Comparative genetics in the grasses. Plant Mol. Biol., 35: 3–15.PubMedCrossRefGoogle Scholar
- Dhaliwal H. S., Friebe B., Gill K. S. and Gill B. S. 1990. Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat. Theor. Appl. Genet., 79: 769–774.CrossRefGoogle Scholar
- Dhaliwal H. S., Gill B. S. and Waines J. G. 1977. Analysis of induced homoeologous pairing in a Ph mutant wheat × rye hybrid. J. Hered., 68: 207–209.Google Scholar
- Dhaliwal H. S., Multani D. S. and Singh B. B. 1987. Identification of rye and barley chromosomes carrying resistance to Karnal bunt of wheat (Neovossia indica). Cereal Res. Comm., 15: 191–194.Google Scholar
- Dhaliwal H. S., Singh H. and William M. 2002. Transfer of rust resistance from Aegilops ovuta into bread wheat (Triticum aestivum L. ) and molecular characterization of resistant derivatives. Euphytica, 126: 153–159.CrossRefGoogle Scholar
- Dogramaci-Altuntepe M. and Jauhar P. P. 2001. Production of durum wheat substitution haploids from durum × maize crosses and their cytological characterization. Genome, 44: 137–142.PubMedCrossRefGoogle Scholar
- Doi K., Iwata N. and Nishimura Y. 1997. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud. ) in the background of japonica rice (O. sativa L. ). Rice Genet. Newsl., 14: 39–40.Google Scholar
- Dong F., Song J., Naess S. K., Helgeson J. P., Gabhardt C. and Jiang J. 2000. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor. Appl. Genet., 101: 1001–1007.CrossRefGoogle Scholar
- Dover G. A. and Riley R. 1972. The prevention of pairing of homoeologous meiotic chromosomes of wheat by a genetic activity of supernumerary chromosomes of Aegilops. Nature, 240: 159–161.CrossRefGoogle Scholar
- Driscoll C. J. 1972. X, Y, Z system of producing hybrid wheat. Crop Sci., 12: 516–517.CrossRefGoogle Scholar
- Dvorak J. and Dubcovsky J. 1995. Recombination between homoeologous chromosomes in wheat in the absence of the Phl locus. pp 64–75. In: Classical and Molecular Cytogenetic Analysis. (eds. ) Raupp W. J. and Gill B. S., Kansas State University, Manhattan.Google Scholar
- Endo T. R. and Gill B. S. 1996. The deletion stocks of common wheat. J. Hered., 87: 295–307.Google Scholar
- Fisher J. A. and Martin R. 1974. Kite, Condor and Egret — three new wheats. Agric. Gaz. NSW, 85: 10–13.Google Scholar
- Flemming W. 1982. Introduction Cited in Cytology and Cytogenetics by C. P. Swanson (1957). Prentice Hall Inc., New Jersey, pp. 1–13.Google Scholar
- Friebe B., Hatchett J. H., Gill B. S., Mukai Y. and Sebesta E. E. 1991. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet., 83: 33–40.CrossRefGoogle Scholar
- Friebe B., Mukai Y., Gill B. S. and Cauderon Y. 1992. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor. Appl. Genet., 84: 899–905.CrossRefGoogle Scholar
- Friebe B., Jiang J., Gill B. S. and Dyck P. L. 1993. Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet., 86: 141–149.CrossRefGoogle Scholar
- Friebe B., Jiang J., Raupp W. J., Mcintosh R. A. and Gill B. S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica, 91: 59–87.CrossRefGoogle Scholar
- Friebe B., Kynast R. G., Hatchett J. H., Sears R. G., Wilson D. L. and Gill B. S. 1999. Transfer of rye derived Hessian fly resistance genes H21 and H25 from bread wheat into durum wheat. Crop Sci., 39: 1692–1696.CrossRefGoogle Scholar
- Fukui K. and Ijima K. 1991. Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet., 81: 589–596.CrossRefGoogle Scholar
- Galinat W. C. 1977. The origin of corn. In: Corn and Corn Improvement, (ed. ) G. F. Sprague.Google Scholar
- Gall J. G. and Pardue M. L. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparation. Proc. Natl. Acad. Sci., USA, 63: 378–383.PubMedCrossRefGoogle Scholar
- Gao D., Guo D. and Jung C. 2001. Monosomic addition lines of Beta corolliflora Zoss in sugarbeet: Cytological and molecular marker analysis. Theor. Appl. Genet., 103: 240–247.CrossRefGoogle Scholar
- Garriga-Caldere F., Huigen D. J., Angrisano A., Jacobsen E. and Ramanna M. S. 1998. Transmission of alien tomato chromosomes from BC1 to BC2 progenies derived from backcrossing potato (+) tomato fusion hybrids to potato: The selection of single additions for seven different tomato chromosomes. Theor. Appl. Genet., 96: 155–163.CrossRefGoogle Scholar
- Garriga-Caldere F., Huigen D. J., Jacobsen E. and Ramanna M. S. 1999. Prospects for introgressing tomato chromosomes into the potato genome: An assessment through GISH analysis. Genome, 42: 282–288.CrossRefGoogle Scholar
- Gavrilenko T., Thieme R. and Rokka V. M. 2001. Cytogenetic analysis of Lycopersicon esculentum ( + ) Solanum tuberosum somatic hybrids and their androgenetic regenerants. Theor. Appl. Genet., 103: 231–239.CrossRefGoogle Scholar
- Gerstel D. U. 1945. Inheritance in Nicotiana tabacum II. The addition of Nicotiana glutinosa chromosomes to tobacco. J. Hered., 36: 197–206.Google Scholar
- Gill B. S. and Kimber G. 1974. Giemsa C-banding karyotype of rice. Proc. Natl. Acad. Sci., USA, 71: 1247–1249.PubMedCrossRefGoogle Scholar
- Gill K. S. and Gill B. S. 1991. A DNA fragment mapped within the submicroscopic deletion of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics, 129: 257–259.PubMedGoogle Scholar
- Giorgi B. and Cuozzo L. 1980. Homoeologous pairing in a ph mutant of tetraploid wheat crossed with rye. Cereal Res. Comm., 8: 485–490.Google Scholar
- Giorgi B. and Barbera F. 1981. Use of mutants that affect homoeologous pairing for introducing alien variation in both durum and common wheat. In: Induced mutations — a tool in plant research. IAEA, Vienna, pp. 37–47.Google Scholar
- Griffiths N. and Thomas H. 1983. Gene transfer. In: Annual Report for 1982 Welsh Plant Breeding Station, Aberstwyth, UK, pp. 145–146.Google Scholar
- Gupta P. K. 1984. Role of loss of the rye heterochromatin in improvement of hexaploid triticale. The Nucleus, 27: 100–107.Google Scholar
- Gupta P. K. 1999. Cytogenetics. Rastogi Publications, Meerut, India, pp. 418.Google Scholar
- Hagberg A. and Hagberg G. 1980. High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas, 93: 341–343.CrossRefGoogle Scholar
- Hagberg A. and Hagberg G. 1987. Some vigorous and productive duplications in barley, pp. 423–426. In: Barley Genetics, (eds). V. S. Yasuda and T. Konishi. Okayama, Japan.Google Scholar
- Haider Ali S. N., Ramanna M. S., Jacobson E. and Visser R. G. F. 2001. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor. Appl. Genet., 103: 687–695.CrossRefGoogle Scholar
- Harrington J. J. 1997. Formation of de novo centromeres and construction of first-generation human artificial chromosomes. Nature Genetics, 15: 345–355.PubMedCrossRefGoogle Scholar
- Ho K. M. and Kasha K. J. 1975. Genetic control of chromosome eliminating during haploid formation in barley. Genetics, 81: 263–275.PubMedGoogle Scholar
- Inagaki M. N. and Hash C. T. 1998. Production of haploids in bread wheat, durum wheat and hexaploid triticale crossed with pearl millet. Plant Breeding, 117: 485–487.CrossRefGoogle Scholar
- Islam A. K. M. R. and Shepherd K. W. 1992. Production of wheat-barley recombinant chromosomes through induced homocologous pairing. I. Isolationof recombinants involving barley arms 3HL and 6HL. Theor. Appl. Genet., 83: 489–494.CrossRefGoogle Scholar
- Jauhar P. P. 1975. Genetic control of diploid like meiosis in hexaploid tall fescue. Nature, 254: 595–597.PubMedCrossRefGoogle Scholar
- Jauhar P. P. and Peterson T. S. 2000. Hybrids between durum wheat and Thinopyrum junceiforme: Prospects for breeding for scab resistance. Euphytica, 00: 1–10.Google Scholar
- Jauhar P. P., Dogramaci-Altuntepe M., Peterson T. S. and Almouslem A. B. 2000. Seedset on synthetic haploids of durum wheat: Cytological and molecular investigations. Crop Sci., 40: 1742–1749.CrossRefGoogle Scholar
- Jena K. K., Khush G. S. and Kochert G. 1994. Comparative RFLP mapping of a wild rice, Oryza officinalis, and cultivated rice, O. sativa. Genome, 37: 382–389.CrossRefGoogle Scholar
- Jiang J., Friebe B., Dhaliwal H. S., Martin T. J. and Gill B. S. 1993. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet., 86: 41–48.CrossRefGoogle Scholar
- Jiang J., Friebe B. and Gill B. S. 1994. Recent advances in alien gene transfer in wheat. Euphytica, 73: 199–212.CrossRefGoogle Scholar
- Jiang J., Morris K. L. D. and Gill B. S. 1994. Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Res., 2: 3–13.PubMedCrossRefGoogle Scholar
- Jiang J., Gill B. S., Wang G. L., Ronald P. C. and Ward D. C. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci., USA, 92: 4487–4491.PubMedCrossRefGoogle Scholar
- Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S. and Ward D. C. 1996. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Natl. Acad. Sci., USA, 93: 14210–14213.Google Scholar
- Kawahara T. and Taketa S. 2001. Fixation of translocation 24. 4B infers the monophyletic origin of Ethiopian tetraploid wheat. Theor. Appl. Genet., 101: 705–710.CrossRefGoogle Scholar
- Kennard W., Phillips R., Porter R. and Grambacher A. 1999. A comparative map of wild rice (Zizania palustris 2n = 2x = 30). Theor. Appl. Genet., 99: 793–799.CrossRefGoogle Scholar
- Khush G. S. and Rick C. M. 1967. Studies on the linkage map of chromosome 4 of the tomato and on transmission of induced deficiencies. Genetica, 38: 74–94.CrossRefGoogle Scholar
- Khush G. S. 1973. Cytogenetics of aneuploids. Academic Press, New York, pp. 301.Google Scholar
- Khush G. S. and Brar D. S. 1989. Wide hybridization in plant breeding. In: Plant Breeding and Genetic Engineering (A. H. Zakri ed. ) SABRAO, Malaysia, pp. 141–188.Google Scholar
- Khushnir W. and Halloran G. M. 1984. Transfer of high kernel weight and high protein content from wild tetraploid wheat to bread wheat using homologous and homoeologous recombination. Euphytica, 33: 249–256.CrossRefGoogle Scholar
- Kihara H. and Tsunewaki K. 1962. Use of alien cytoplasm as a new method of producing haploids. J. Genet., 37: 310–313.Google Scholar
- Kjima K., Ohmido T., Hirose T., Mitsui T. and Fukui K. 1999. Visualization of the DNA stretches in a rice genotype by extended DNA fiber-FISH. In: Plant and Animal Genome VII, San Diego, USA, pp. 83.Google Scholar
- Knott D. R. 1961. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci., 41: 109–123.CrossRefGoogle Scholar
- Kynast R. G., Riera-Lizarazu O., Vales M. I., Okagaki R. J., Maquieira S. B., Chen G., Ananiev E. V., Odl and W. E., Russell C. D., Stec A. O., Livingston S. M., Zaia H. A., Rines H. W. and Phillips R. L. 2001. A complete set of maize individual chromosome additions to the oat genome. Plant Physiol., 125: 1216–1227.PubMedCrossRefGoogle Scholar
- Lapitan N. L. V., Sears R. G. and Gill B. S. 1984. Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor. Appl. Genet., 68: 547–554.CrossRefGoogle Scholar
- Larkin P. J., Banks P. M., Bhati R., Bretteil R. I. S., Davies P. A., Ryan S. A., Scowcroft W. R., Spindler L. H. and Tanner G. J. 1989. From somatic variation to variant plants: Mechanisms and applications. Genome, 31: 705–71Google Scholar
- Laurie D. A., O’Donoughue L. S. and Bennett M. D. 1990. Wheat × maize and other wide sexual hybrids: Their potential for genetic manipulation and crop improvement. pp. 95–126. In: Gene manipulation in plant improvement IL (ed. ) J. P. Gustafson. 19th Stadler Genetics Symposium. Plenum Press, New York.CrossRefGoogle Scholar
- Law C. N., Snape J. W. and Worl and A. J. 1981. Intraspecific chromosome manipulation. Phil Trans. R. Soc., Lond., 292: 509–518.CrossRefGoogle Scholar
- Li HJ., Guo B. H., Li Y. W., Du L. Q., Jia X. and Chu C. C. 2000. Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L. ) and Dasypyrum villosum arising from tissue culture. Genome, 43: 756–762.PubMedGoogle Scholar
- McClintock B. 1950. The origin and behaviour of mutable loci in maize. Proc. Natl. Acad. Sci., USA, 36: 344–355.PubMedCrossRefGoogle Scholar
- McCouch S. R., Kochert G., Yu Z. H., Wang Z. Y., Khush G. S., Coffman W. R. and Tanksley S. D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet., 76: 815–829.CrossRefGoogle Scholar
- Mendel G. 1865. Versuche über Pflanzen-Hybriden. Verh. Naturf Orshung Ver. In Brüm Verh., 4: 3–47.Google Scholar
- Molnar-Lang M., Linc G., Logojan A. and Sutka J. 2000. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome, 43: 1045–1054.PubMedGoogle Scholar
- Morgan W. G., King T. P., Koch S., Harper J. A. and Thomas H. 2001. Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridization. Theor Appl. Genet., 103: 696–701.CrossRefGoogle Scholar
- Mujeeb-Kazi A. and Jewell D. C. 1985. CIMMYT’s wide cross program for wheat and maize improvement. In: Biotechnology in International Agricultural Research. International Rice Research Institute, Manila, Philippines, pp. 219–226.Google Scholar
- Mukai Y., Fribe B., Hatchett M., Yamamoto M. and Gill B. S. 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosama, 102: 88–95.CrossRefGoogle Scholar
- Okagaki R. J., Kynast R. G., Livingston S. M., Russell C. D., Rines H. W. and Phillips R. L. 2001. Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol, 125: 1228–1235.PubMedCrossRefGoogle Scholar
- Okamoto M. 1957. Asynaptic effect of chromosome V. Wheat Information Service 5: 6.Google Scholar
- O’mara J. G. 1940. Cytogenetic studies on Triticinae. I. A method for determining the effect of individual Secale chromosomes on Triticum. Genetics, 25: 401–408.Google Scholar
- Orton T. J. 1980. Haploid barley regenerated from callus cultures of Hordeum vulgare × H. jubatum. J. Hered., 71: 780–782.Google Scholar
- Park S. J., Walsh E. J., Reinbergs E., Song L. S. P. and Kasha K. J. 1976. Field performance of doubled haploid barley lines in comparison with lines.Google Scholar
- Peloquin S. J., Hougas R. W. and Gabert A. C. 1964. Haploidy as a new approach to the cytogenetics and breeding of Solanum tuberosum. p. 21–28. In: Chromosome manipulations and plant genetics. (eds. ) R. Riley and K. R. Lewis, Oliver and Boyd Ltd., London.Google Scholar
- Pickering R. A., Malyshev S., Kunzel G., Johnston P. A., Korzun V., Menke M. and Schubert I. 2000. Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet., 100: 27–31.CrossRefGoogle Scholar
- Rajaram S., Maan E. E., Ortiz-Ferrara G. and Mujeeb-Kazi A. 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sixth Intern. Wheat Genet. Symp., Kyoto, Japan, pp. 613–621.Google Scholar
- Ramage R. T. 1965. Balanced tertiary trisomics for use in hybrid seed production. Crop Sci., 5: 177–178.CrossRefGoogle Scholar
- Rayburn A. L. and Gill B. S. 1985. Use of biotin labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered., 16: 78–81.Google Scholar
- Rhoades M. M. 1936. A cytogenetic study of a chromosome fragment in maize. Genetics, 21: 491–502.PubMedGoogle Scholar
- Riera-Lizarazu O., Rines H. W. and Phillips R. L. 1996. Cytological and molecular characterization of oat × maize partial hybrids. Theor. Appl. Genet., 93: 123–125.CrossRefGoogle Scholar
- Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W. and Phillips R. L. 2000. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 156: 327–339.PubMedGoogle Scholar
- Riley R., Chapman V. and Johnson R. 1968. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 217: 383–384.CrossRefGoogle Scholar
- Roman H. and Ullstrup A. J. 1952. The use of A-B translocations to locate genes in maize. Agron. Jour., 43: 450–454.CrossRefGoogle Scholar
- Rosenfeld M. 1997. Human artificial chromosomes get real. Nature Genetics, 15: 333–335.PubMedCrossRefGoogle Scholar
- Sachan J. K. S. and Tanaka R. 1977. Variation and pattern of C-banding in Zea chromosomes. Nucleus, 20: 61–64.Google Scholar
- Sakaguchi S. and Nishimura Y. 1969. Breeding seedless watermelon by using induced chromosome translocations. Jarq., 3: 18–22.Google Scholar
- Scalenghe F., Tureo E., Edstrom J. E. and Pirotta V. 1981. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosama, 82: 205–216.CrossRefGoogle Scholar
- Schwarzacher T., Anamthawat-Jonsson K., Harrison G. E., Islam A. K. M. R., Jia J. Z., King I. P., Leitch A. R., Miller T. E., Reader S. M., Rogers W. J., Shi M. and Heslop-Harrison J. S. 1992. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet., 84: 778–786.CrossRefGoogle Scholar
- Sears E. R. 1953. Nullisomic analysis in common wheat. Amer. Nat., 87: 245–252.CrossRefGoogle Scholar
- Sears E. R. 1954. The aneuploids of common wheat. Res. Bull, Mo. Agr. Exp. Stn., 572, 59pp.Google Scholar
- Sears E. R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven. Symp. Biol., 9: 1–22.Google Scholar
- Sears E. R. 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. p. 29–45. In: Chromosome manipulations and plant genetics. (eds. ) R. Riley and K. W. Lewis, Oliver and Boyd Ltd., London, London.Google Scholar
- Sears E. R. 1972. Chromosome engineering in wheat. Stadler Genet. Symp., 4: 23–38.Google Scholar
- Sears E. R. 1973. Agropyron-wheat transfers induced by homoeologous pairing. In: 4th Intern. Wheat Genet. Symp., Columbia. pp. 191–199.Google Scholar
- Sears E. R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol., 19: 585–593.Google Scholar
- Sherman J. D., Smith L. Y., Blake T. K. and Talbert L. E. 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 44: 38–44.PubMedCrossRefGoogle Scholar
- Singh K., Ishii T., Parco A., Huang N., Brar D. S. and Khush G. S. 1996a. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L. ). Proc. Natl. Acad. Sci., 93: 6163–6168.PubMedCrossRefGoogle Scholar
- Singh K., Multani D. S. and Khush G. S. 1996b. Origin, characterization, and use in determining the orientation of chromosome map. Genetics, 143: 517–529.PubMedGoogle Scholar
- Singh R. J. 1993. Plant Cytogenetics. CRC Press, Boca Raton, pp. 391.Google Scholar
- Snowdon R. J., Friedrich T., Friedt W. and Kohler W. 2002. Identifying the chromosomes of the A-C-genome diploid Brassica species. B. rapa (Syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor. Appl. Genet., 104: 533–538.PubMedCrossRefGoogle Scholar
- Sutton W. S. 1903. The chromosomes in heredity. Biol. Bull., 4: 231–251.CrossRefGoogle Scholar
- Sutton W. S. and Boveri T. 1903. An appraisal. Cited in Cytogenetics by C. P. Swanson, T. Merz, W. J. Yong (1967). Prentice Hall Inc., New Jersey, pp. 1–7.Google Scholar
- Swaminathan M. S. 1951. Notes on induced polyploids in the tuber-bearing Solanum species and their crossability with S. tuberosum. Amer. Potato Jour., 28: 472–489.CrossRefGoogle Scholar
- Szabados L., Hadlaczky G. and Dudits D. 1981. Uptake of isolated plant chromosomes by plant protoplasts. Planta, 151: 141–145.CrossRefGoogle Scholar
- Thomas H., Leggett M. and Jones LT. 1975. The addition of a pair of chromosomes of the wild oat, Avena barabta (2n = 28) to the cultivated oat, A. sativa L. (2n = 42). Euphytica, 24: 717–724.CrossRefGoogle Scholar
- Thomas H., Powell W. and Aung T. 1980. Interfering with regular mieotic behaviour in Avena sativa as a method of incorporating the gene for mildew resistance from A. barbata. Euphytica, 29: 635–640.CrossRefGoogle Scholar
- Unrau J., Person C. and Kuspira J. 1956. Chromosome substitution in hexaploid wheat. Can. J. Bot., 34: 629–640.CrossRefGoogle Scholar
- Vrana J., Kubalakova M., Simkova H., Chihalikova J., Lysak M. A. and Dolezel J. 2000. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L. ). Genetics, 156: 2033–2041.PubMedGoogle Scholar
- Wall A. M., Riley R. and Chapman V. 1971. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet. Res., 18: 311–328.CrossRefGoogle Scholar
- Wang R. C., Liang G. H. and Heyne E. G. 1977. Effectiveness of ph gene in inducing homoeologous pairing in Agrotrichum. Theor. Appl. Genet., 51: 139–141.Google Scholar
- Wang W. N., Hang A., Hansen J., Burton C., Mallory-Smith C. A. and Zemetra R. S. 2000. Visualization of A-and B-genome chromosomes in wheat (Triticum aestivum L. ) × jointed goat grass (Aegilops cyclindrica Host) backcross progenies. Genome, 43: 1038–1044.PubMedGoogle Scholar
- Watanabe K. N., Orrillo M., Vega S., Golmirzaie A. M., Perez S., Crusado J. and Watanabe J. A. 1996. Generation of pest resistant, diploid potato germplasm with short-day adaptation from diverse genetic stocks. Breed. Sci., 46: 329–336.Google Scholar
- Wienhues A. 1965. Cytogenetische Untersuchungen über die chromosomale Grundlage der Rostre-sistenz der Weizensortie Weique. Zuchter, 35: 352–354.Google Scholar
- Xin Z. Y., Zhang Z. Y., Chen X., Lin Z. L., Ma Y. Z., Xu HJ., Banks P. M. and Larkin PJ. 2001. Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica, 119: 161–165.CrossRefGoogle Scholar
- Zeller F. J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: 5th Intern. Wheat Genet. Symp., Columbia, Missouri, pp. 209–222.Google Scholar
- Zhong X. B., Bodeau J., Fransz P. F., Williamson V. M., Van Kammen A., De Jong J. H. and Zabel P. 1999. FISH to meiotic pachytene chromosomes of tomato locates the root-know nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively. Theor. Appl. Genet., 98: 365–370.CrossRefGoogle Scholar
- Zhong X. B., Fransz P. F., Van-Wennekes E. J., Zabel P., Van Kammen A. and De Jong J. H. 1996. High resolution mapping by fluorescence in situ hybridization to pachytene chromosomes and extended DNA fibres. Plant Mol. Biol. Rep., 14: 232–242.CrossRefGoogle Scholar
- Ziolkowski P. A. and Sadowski J. 2002. FISH-mapping of rDNAs and Arabidopsis BAC on pachytene complements of selected Brassicas. Genome, 45: 189–197.PubMedCrossRefGoogle Scholar