A Century of Advances in Plant Breeding Methodologies

  • M. C. Kharkwal
  • Darbeshwar Roy


Plant breeding in the first half of the twentieth century which started with the rediscovery of Mendel’s work, mainly involved development of pure-line(s), clones, hybrids, synthetics and composites with higher yield, stability, better quality and resistance to biotic and abiotic stresses. Following the early success, significant contributions were made in the development of semi-dwarf high yielding varieties of wheat by Borlaug and his colleagues at CIMMYT, Mexico, and of rice by Beachell and his colleagues at IRRI, Philippines. Also, high yielding hybrids were developed in maize, sorghum, pearl millet, sunflower, cotton, rice, pigeonpea and in other crops. Efforts are currently also underway to develop hybrids based on genetically engineered male-sterility systems and apomixis. The twentieth century also saw significant developments in mutation breeding, quantitative genetics and other areas relevant to plant breeding, which helped in a better understanding of the genetic architecture of a trait for formulating suitable breeding strategies. Advances in molecular genetics in the last twenty years have opened up altogether new possibilities in analyzing genetic diversity, fingerprinting genotypes, and using molecular marker assisted selection. The last decade of the twentieth century also saw the development of transgenics, the genetically engineered varieties in a number of crop plants for commercial cultivation. This paper takes a journey in the world of plant breeding through the 20th century.


Inbred Line Plant Breeding Male Sterility Cytoplasmic Male Sterility Pearl Millet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams M. W. 1967. Basis of yield component compensation in crop plants with special reference to the fieldbean (Phaseolus vulgaris). Crop Sci., 7: 505–510.CrossRefGoogle Scholar
  2. Allard R. W. 1999. Principles of Plant Breeding. 2nd Ed. John Wiley and Sons, New York.Google Scholar
  3. Allard R. W. and Bradshaw A. D. 1964. Implications of genotype-environment interactions in applied plant breeding. Crop Sci., 4: 503–508.CrossRefGoogle Scholar
  4. Anderson E. 1954. A semi-graphical method for the analysis of complex problem. Proc. Natl. Acad. Sci. Wash., 43: 923–927.CrossRefGoogle Scholar
  5. Anonymous. 2001. Production Technology of Quality Protein Maize. Directorate of Maize Research (ICAR), Pusa Campus, New Delhi 110 012. pp 14.Google Scholar
  6. Auerbach C. and Robson J. M. 1946. Chemical production of mutations. Nature, 157: 302.PubMedCrossRefGoogle Scholar
  7. Avery O. T., MacLeod C. M. and McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med., 79: 137–158.PubMedCrossRefGoogle Scholar
  8. Barber C. A. 1916. Studies in Indian sugarcane, No. 2. Mem. Dept. Agric. India, Bot. Ser., 8: 103–199.Google Scholar
  9. Barett J. A. 1978. A model for epidemic development in varietal matures. In: Plant Disease Epidemiology. Scott & A. Bainsbridge, Blackwells.Google Scholar
  10. Bartlett M. S. 1946. The use of transformations. Biometrics, 1: 39–53.Google Scholar
  11. Bateson W. 1902. Mendel’s Principles of Heredity: a defence. Cambridge, U. K.Google Scholar
  12. Bateson W. 1909. Mendel’s Principles of Heredity, Camb. Univ. Press, Cambridge, U. K.CrossRefGoogle Scholar
  13. Bateson W. and Punnett R. C. 1905. Experimental studies in the physiology of heredity. Reports to the Evolution Committee of the Royal Society. II. Harrison and Sons, London.Google Scholar
  14. Bernardo R. 1996. Best linear unbiased prediction of maize single cross performance. Crop Sci., 36: 50–36.CrossRefGoogle Scholar
  15. Biffin R. H. 1905. Mendel’s laws of inheritance and wheat breeding. J. Agric. Sci., 1: 4–48.CrossRefGoogle Scholar
  16. Blakeslee A. F. and Avery A. G. 1937. Methods of inducing chromosome doubling in plants by treatment with colchicine. Science, 86: 408.Google Scholar
  17. Borlaug N. E. 1953. New approach to the breeding of wheat varieties resistant to Puccinia graminis. Phytopathology, 43: 463.Google Scholar
  18. Botstein D., White R. W., Sholnick M. and Davies R. W. 1980. Construction of a genetic linkage map in man using restriction fragment polymorphism. Amer. J. Human Genetics, 32: 314–331.Google Scholar
  19. Breese E. L. 1969. The measurement of significance of genotype environment interactions in grasses. Heredity, 24: 27–44.CrossRefGoogle Scholar
  20. Brim C. A. 1966. A modified pedigree method of selection in soybean. Crop Sci., 6: 220.CrossRefGoogle Scholar
  21. Brim C. A. and Stuber C. W. 1973. Application of genetic male sterility to recurrent selection schemes in soybean. Crop Sci., 13: 528–530.CrossRefGoogle Scholar
  22. Browning J. A. and Frey K. J. 1969. Multilines cultivars as a means of disease control. Annu. Rev. Phytopathology, 7: 355–82.CrossRefGoogle Scholar
  23. Bruce A. B. 1910. The Mendelian theory of heredity and the augementation of vigor. Science, 32: 627–628.PubMedCrossRefGoogle Scholar
  24. Burnham C. R. 1956. Chromosomal interchanges in plants. Bot Rev., 22: 419–552.CrossRefGoogle Scholar
  25. Cavalli L. L. 1952. An analysis of linkage in quantitative inheritance. In: Quantitiative Inheritance, (eds. ) E. C. R. Reeve and C. H. Waddington, HMSO, London, pp. 134–144.Google Scholar
  26. Chakraborty S., Chakraborty N. and Datta A. 2000. Increased nutritive value of transgenic potato by expressing a non-allergenic seed albumin gene from Amaranthus hypochondriaus. Proc. Natl. Acad. Sci., USA, 97: 3724–3729.PubMedCrossRefGoogle Scholar
  27. Chase S. S. 1952. Production of homozygous diploids of maize from monoploids. Agron. J., 44: 263–267.CrossRefGoogle Scholar
  28. Chrispeels M. J. and Sadava D. E. 1994. Plant, Genes and Agriculture. Jones and Bartlett Publishers, Boston.Google Scholar
  29. Cochran W. G. and Cox G. M. 1950. Experimental designs, John Wiley and Sons, New York.Google Scholar
  30. Cockerham C. C. 1954. An extension of the concept of partitioning of hereditary variance for analysis of conveniance among relatives when epistasis is present. Genetics, 19: 859–882.Google Scholar
  31. Collins F. et al. 2001. Initial sequencing and analysis of the human genome. Nature, 409: 860–921.PubMedCrossRefGoogle Scholar
  32. Comstock R. E. and Robinson. H. F. 1952. Genetic parameters, their estimation and significance. Proc. VI. Intl. Grassland Congr., 1: 284–291.Google Scholar
  33. Comstock R. E., Robinson H. F. and Harvey P. H. 1949. A breeding procedure designed to make use of both general and specific combining ability. Agron. J., 41: 360–367.CrossRefGoogle Scholar
  34. Correns C. 1900. Mendels Regal über das Verhalten der Nach-Kommenschaft Rassen Bastarde. Ber. Deutsch. bot. Ges., 18: 158–168.Google Scholar
  35. Crow J. F. and Kimura M. 1970. An Introduction to population Genetics Theory. Harper and Row, New York.Google Scholar
  36. Dalrymple D. 1986. Development and spread of high yielding rice varieties in developing countries. Washington D. C. USAID.Google Scholar
  37. Darlington C. D. and Mather K. 1950. The Elements of Genetics. The McMillan Company, New York.Google Scholar
  38. Darwin C. 1859. The origin of species. John Murray, London.Google Scholar
  39. Davis R. L. 1927. Report of the plant breeder. Rep, Puerto Rico Agric Expt. Stn. pp. 14–15.Google Scholar
  40. De Candolle A. 1882. Origin of cultivated plants. Hafner, New York.Google Scholar
  41. Delaunay L. N. 1931. Resultate eines dreijahrigen Rontgen Versuchs mit Weizen. Der Züchter, 3: 129–137.Google Scholar
  42. De Vries H. 1901. Die Mutations — Theorie. I, Von Veit, Leipzig, 648 p.Google Scholar
  43. Donald C. M. 1968. The breeding of crop ideotype. Euphytica, 17: 385–403.CrossRefGoogle Scholar
  44. Downey R. K. 1964. A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can. J. Plant Sci., 44: 295.CrossRefGoogle Scholar
  45. Dudley J. W. 1993. Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci., 33: 660–668.CrossRefGoogle Scholar
  46. Duvick D. N. 1959. The use of cytoplasmic male-sterility in hybrid seed production. Economic Bot., 8: 167–195.CrossRefGoogle Scholar
  47. Duvick D. N. 1965. Cytoplasmic male sterility in corn. Adv. Genet., 13: 1–56.CrossRefGoogle Scholar
  48. East E. M. 1916. Studies on size inheritance in Nicotiana. Genetics, 1: 164–176.Google Scholar
  49. East E. M. 1908. Inbreeding in corn. Connecticut Agric. Expt. Stn. 1907. pp. 419–428.Google Scholar
  50. East E. M. 1936. Heterosis. Genetics, 21: 375–397.PubMedGoogle Scholar
  51. East E. M. and Mangelsdorf A. J. 1925. A new interpretation of the hereditary behaviour of self-sterile plants. Proc. Natl. Acad. Sci., USA, 11: 116–183.CrossRefGoogle Scholar
  52. Eberhart A. A. and Russell W. A. 1966. Stability parameters for comparing varieties. Crop Sci., 6: 36–40.CrossRefGoogle Scholar
  53. Ellingboe A. H. 1981. Changing concepts in host-parasite genetics. Ann. Rev. Phytopathol., 19: 125–143.CrossRefGoogle Scholar
  54. Elliott Fred C. 1958. Plant breeding and cytogenetics, McGraw Hill, New York.Google Scholar
  55. Ellis H. and Horvitz H. R. 1986. Genetic control of programmed cell death in the nematode C. elegance. Cell, 44: 817–829.Google Scholar
  56. Falconer D. S. 1960. Introduction to quantitative genetics. Longman, London.Google Scholar
  57. Fasoulas A. C. 1973. A New Approach to Breeding Superior Yielding Varieties. Aristotelian Univ. of Thessaloniki, Publication 3: 114 pp. Thessaloniki, Greece.Google Scholar
  58. Fasoulas A. C. 1987. A moving block evaluation technique for improving the efficiency of pedigree selection. Euphytica, 36: 477–478.CrossRefGoogle Scholar
  59. Federer W. T. 1961. Augmented designs with one way elimination of heterogeniety, Biometrics, 17: 444.CrossRefGoogle Scholar
  60. Finlay K. W. and Wilkinson G. N. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agr. Res., 14: 742–754.CrossRefGoogle Scholar
  61. Finny D. J. 1958. 1958. Plant selection for yield improvement. Euphytica, 7: 83–106.Google Scholar
  62. Fisher R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb., 52: 399–433.Google Scholar
  63. Fisher R. A. 1926. The arrangement of field experiments. Journal of the Ministry of Agriculture, 33: 503–513.Google Scholar
  64. Fisher R. A. 1935. The Design of Experiments (5th edition). Oliver and Boyd. Edinburgh.Google Scholar
  65. Fisher R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7: 179–188.Google Scholar
  66. Fisher R. A. 1950. Statistical methods for research workers (11th edition). Oliver and Boyd, Edinburgh.Google Scholar
  67. Fisher R. A., Immer F. R. and Tedin O. 1932. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance. Genetics, 17: 107–124.PubMedGoogle Scholar
  68. Fleishmann R. et al. 1995. Whole genome random sequencing and assembly of Haemophillus influenza RD. Nature, 269: 495.Google Scholar
  69. Flor H. H. 1956. The complemenary genic systems in flax and flax rust. Adv. Genet., 8: 29–64.CrossRefGoogle Scholar
  70. Frankel O. H. 1970. Genetic conservation in perspective, p. 469–49. In: Genetic Resources in Plants — their exploration and conservation, (eds) Frankel O. H. and E. Bennet. IBF Handbook No. 11, Blackwell, Oxford and EdinburGoogle Scholar
  71. Freeman E. M. and Johnson E. C. 1909. The loose smuts of wheat and barley. USDA Bureau Plant Ind. Bull. 152. 48 pp.Google Scholar
  72. Frey K. J. 1955. Agronomic mutations in oats induced by X-ray treatment, Agron. J., 47: 207–210.CrossRefGoogle Scholar
  73. Galton F. 1889. Natural Inheritance. Macmilan and Co., London.CrossRefGoogle Scholar
  74. Gardner C. O. 1963. Estimates of genetic parameters in cross fertilizing plant and their implications in plant breeding. pp. 225–252. In: Statistical genetics and plant breeding. Special publ. 982, NAS-NRC, Washington, D. C.Google Scholar
  75. Gaul H., Ulonska E., Winkel C. Z. and Braker G. 1969. “Micro-mutations influencing yield in barley — studeis over nine generations”. In: Induced mutations in plants, Proc. Symp. Pullman, 1969, IAEA, Vienna, pp. 375–398.Google Scholar
  76. Gerstel D. V. 1950. Self incompatibility studies in Gauyule. II. Inheritance. Genetics, 35: 282–286.Google Scholar
  77. Gottschalk W. and Wolff G. 1983. Induced Mutations in Plant Breeding, Monograph on Theoretical and Applied Genetics 7. Springer-Verlag, Berlin, Heidelberg, pp, 323–327.Google Scholar
  78. Goulden C. H. 1939. Problems in plant selection. In: Proc. 7th Int. Genet. Congr., (ed) R. C. Burnett, Edinburgh, Cambridge Univ. Press, pp. 132–133.Google Scholar
  79. Gregory W. C. 1955. X-ray breeding of peanuts (Arachis hypogaea). Agron. J. 47: 396–399.CrossRefGoogle Scholar
  80. Griffing B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Austr. Journ. Bio. Sci., 9: 463–493.Google Scholar
  81. Guha S. and Maheshwari S. C. 1964. In vitro production of embryos from anthers of Datura. Nature, 204: 497.CrossRefGoogle Scholar
  82. Gupta P. K. 1995. Cytogenetics. Rastogi & Co., Meerut, IndiaGoogle Scholar
  83. Gupta P. K. and Priyadarshan P. M. 1982. Triticale — present status and future prospects. Advances in Genetics. 21: 253–345.CrossRefGoogle Scholar
  84. Gusella J. F., Wexler N. S., Conneally P. M., Naylor S. L. et al. 1983. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature, 306: 234–238.PubMedCrossRefGoogle Scholar
  85. Gustafsson A. 1954. Swedish mutation work in plants. Background and present organization. Acta Agr. Scand. 4: 361–364.CrossRefGoogle Scholar
  86. Haidane J. B. S. 1942. New Paths in Genetics, Harper and Bros., New York.Google Scholar
  87. Hallauer A. R. and Eberhart S. A. 1970. Reciprocal full-sib selection. Crop Sci., 10: 315–316.CrossRefGoogle Scholar
  88. Hallauer A. R. and Miranda J. B. 1981. Quantitative genetics in maize breeding. Iowa State Univ. Press/ Ames.Google Scholar
  89. Hanna W. W. 1995. Use of apomixis in cultivar development. Adv. Agron., 54: 334–350.Google Scholar
  90. Hardy G. H. 1908. Mendelian proportions in a mixed population. Science, 28: 49.PubMedCrossRefGoogle Scholar
  91. Harlan H. V. and Pope M. N. 1922. The use and value of backcrosses in small grain breeding. J. Hered., 13: 319–322.Google Scholar
  92. Harlan J. R. 1971. Agricultural origins: Centres and non-centres. Science, 174: 468–474.PubMedCrossRefGoogle Scholar
  93. Harlan J. R. and DeWet J. M. J. 1971. Towards a rational classification of cultivated plants. Taxon, 20: 509–517.CrossRefGoogle Scholar
  94. Harrington J. B. 1937. The Mass Pedigree Method in the Hybridization Improvement of Cereals. J. Amer. Soc. Agron. 29: 379–384CrossRefGoogle Scholar
  95. Harrington J. B. 1952. Cereal breeding procedures. Food and Agric. Org., U. N. Paper 28, Rome, Italy.Google Scholar
  96. Harris J. A. 1912. A simple test of the goodness of fit of Mendelian ratios. Am. Naturalist, 46: 741-745.Google Scholar
  97. Hatchett J. H. and Gallun R. L. 1970. Genetics of the ability of the Hessian fly Mayetiola destructor, to survive on wheats, having different genes for resistance. Ann. Entomol Soc. Amer., 63: 1400-1407.Google Scholar
  98. Hayes H. K. and Garber R. J. 1919. Synthetic production of high protein corn in relation to breeding. J. Amer. Soc. Agron., 11: 309-319.Google Scholar
  99. Hayes H. K., Parker J. H. and Kurzweil C. 1920. Genetics of rust resistance in crosses of varieties of Triticum vulgare with varieties of T. durum and T. dicoccum. J. Agri. Res., 19: 523–542.Google Scholar
  100. Hayman B. I. 1954. The theory and analysis of diallel crosses. Genetics, 39: 789–809.PubMedGoogle Scholar
  101. Hayman B. I. and Mather K. 1955. The description of genic interactions in continuous variation. Biometrics, 11: 69–82.CrossRefGoogle Scholar
  102. Hazel L. N. 1943. The genetic basis of constructing selection index. Genetics, 28: 476–490.PubMedGoogle Scholar
  103. Henderson C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31: 423–427.PubMedCrossRefGoogle Scholar
  104. Henshaw G. G. 1979. Tissue culture and germplasm storage. Int. Assoc. Plant Tissue Culture, Newsletter, 28: 2–7.Google Scholar
  105. Hopkins G. G. 1899. Improvement in the chemical composition of the corn kernel. Illionois Agric. Exp. Stn. Bull, 55: 205–240.Google Scholar
  106. Hughes M. B. and Babcock E. B. 1950. Self-incompatibility in Crepis foetida L. subsp. rhoedaifolia. Genetics, 35: 570–580.Google Scholar
  107. Hull F. H. 1945. Recurrent selection for specific combining ability. Agron. J., 37: 134–145.Google Scholar
  108. Ingversion J., Koie B. and Doll H. 1973. Induced seed protein mutant of barley. Experientia, 29: 1151–52.Google Scholar
  109. Jain H. K. 1986. Eighty Years of Post Mendelian Breeding for Crop Yield: Nature of selection pressure and future potential, Indian J. Genet., 46(Suppl. ): 30–53.Google Scholar
  110. Jain H. K., Singhai N. C. and Austin A. 1976. Breeding for higher protein yields in bread wheat. Experimental approach and phenotypic markers. Z. Pflanzenzuchtg, 77: 110–111.Google Scholar
  111. Jenkins M. T. 1934. Methods of estimating the performance of double crosses in corn. J. Amer. Soc. Agron., 26: 199–204.CrossRefGoogle Scholar
  112. Jenkins M. T. 1935. The effect of inbreeding and of selection within inbred lines of maize upon the hybrids made after successive generation of selfing. Iowa State J. Sci., 9: 429–50.Google Scholar
  113. Jenkins M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Soc. Agron., 32: 55–63.CrossRefGoogle Scholar
  114. Jensen N. F. 1952. Intra-varietal diversification in oat breeding. Agron. J., 44: 30–34.CrossRefGoogle Scholar
  115. Jensen N. F. 1970. A diallel selective mating system for cereal breeding. Crop Sci., 10: 629–635.CrossRefGoogle Scholar
  116. Jinks J. L. 1955. A survey of genetical basis of heterosis in a variety of diallel crosses. Heredity, 9: 223–238.CrossRefGoogle Scholar
  117. Jinks J. L. and Mather K. 1955. Stability in the development of heterozygotes and homozygotes. Proc. Roy. Soc. B., 143: 561–578.CrossRefGoogle Scholar
  118. Jinks J. L. and Pooni H. S. 1976. Predicting the properties of recombinant inbred lines derived by single seed descent. Heredity, 36: 253–66.CrossRefGoogle Scholar
  119. Jinks J. L. and Pooni H. S. 1982. Predicting the properties of pure breeding lines extractable from a cross in the presence of linkage. Heredity, 49: 265–270.CrossRefGoogle Scholar
  120. Johannsen W. L. 1903. Über Erblickeit in Populationen und in reinen Leinen. Gustav Fischer, Jena. (Heredity in populations and pure lines. In: Classic Papers in Genetics. (ed. ) J. A. Peters. Prentice-Hall, Englewood Cliffs, New Jersy, 1959, pp. 20–26)Google Scholar
  121. Johannsen W. L. 1926. Elemente der exacten Erblichkeitslehre. Gustav Fischer, Jena.Google Scholar
  122. Johnson R. 1984. A critical analysis of durable resistance. Annu. Rev. Phytopathol., 32: 309–330.CrossRefGoogle Scholar
  123. Jones D. F. 1917. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad Sci., 3: 310–312.PubMedCrossRefGoogle Scholar
  124. Jones D. F. 1918. The effects of inbreeding and crossbreeding upon development. Connecticut Agric. Exp. Stn. Bull. 207: 5–100.Google Scholar
  125. Jones H. A. and Davis G. N. 1944. Inbreeding and heterosis and their relation to the development of new varieties of onions. U. S. D. A. Tech. Bull., 874: 1–28.Google Scholar
  126. Jones L. R. and Gilman J. C. 1915. The control of cabbage yellows through disease resistance. Wis. Agr. Exp. Sta. Res. Bull., 38: 1915.Google Scholar
  127. Karpechenko G. D. 1927. Polyploid hybrids of Raphanus sativus L. × Brassica oleracea L. Bull. Appl. Bot., Genet. PL Breed., 17: 305–410.Google Scholar
  128. Kasha K. J. and Kao K. N. 1970. High frequency haploid production in barley (Hordeum vulgare L. ) Nature, 225: 874–876.Google Scholar
  129. Kawasaki S., Borchert C., Deyholes M., Wang H., Brazille S., Kawai K., Galbraith D. and Bohnert H. J. 2001. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13: 889–905.PubMedGoogle Scholar
  130. Kearsey M. J. and Jinks J. L. 1968. A general method of detecting additive, dominance and epistatic variation for metrical traits. II. Application to inbred lines. Heredity, 24: 45–47.Google Scholar
  131. Keeble F. and Pellew C. 1910. The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J. Genetics, 1: 47–56.CrossRefGoogle Scholar
  132. Kempthorne O. and Curnow R. N. 1961. The partial diallel cross. Biometrics, 17: 229–250.CrossRefGoogle Scholar
  133. Kharkwal M. C. 1996. Accomplishments of mutation breeding in crop improvement in India. In: Isotopes & Radiations in Agriculture and Environment Research, (eds. ) Sachdev M. S., Sachdev P. and Deb D. L. Indian Society for Nuclear Techniques in Agriculture and Biology. New Delhi, pp. 196–218.Google Scholar
  134. Kharkwal M. C., Pawar S. E. and Pandey R. N. 2001. Seventy five Years of Research on Induced Mutations with special reference to Crop Improvement in India. In: Applications of Radioisotopes and Radiation Technology in the 21st Century. (eds. ) N. Ramamurty, M. Ananthakrishnan and A. N. Nandakumar, Proc. of NAARRI International Conference December 12-14, 2001, Mumbai. pp. 230–235.Google Scholar
  135. Kharkwal M. C., Pandey R. N. and Pawar S. E. 2003. Mutation Breeding for Crop Improvement. pp 601–645. In: Plant Breeding — Mendelian to Molecular Approaches. (eds. ) Jain H. K. and Kharkwal M. C., Narosa Publishing House, New Delhi, India.Google Scholar
  136. Khush G. S. and Rick C. M. 1967. Studies on the linkage map of chromosme 4 of the tomato and on transmission of induced deficiencies. Genetica, 38: 74–94.CrossRefGoogle Scholar
  137. Khus G. S., Coffman W. R. and Beachell H. M. 2001. The history of rice breeding: IRRI’s contribution, pp. 117–135. In: Rice Research and Production in the 21st Century. (ed. ) Rockwood W. G. : Symposium honouring Robert F. Chandler Jr., Los Banos (Philippines); IRRI. 224 p.Google Scholar
  138. Kihara H. 1917. Über cytologiesche Studien bei einigen Getreidearten. Mit. 1. Spezies-Bastard der Weizens und Weigen roggenn-bastard. Bot Mag. Tokyo, 32: 17–19.Google Scholar
  139. Kihara H. 1924. Cytologishe und genetische Studien bei wichtigen Getreidarten mit besonderer Rücksicht auf das verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ., 1: 1–200.Google Scholar
  140. Kihara H. 1951. Triploid watermelons. Proc. Am. Soc. Hort. Sci., 58: 217–230.Google Scholar
  141. Kimura M. 1970. The length of time required for selectively neutral mutant to reach fixation through random frequency drift in a finite population. Genet. Res. Cambridge, 15: 131–133.CrossRefGoogle Scholar
  142. Knott D. R. 1979. Selection for yield in wheat breeding. Crop Sci., 15: 295–299.CrossRefGoogle Scholar
  143. Konzak C. F. 1954. Stem rust resistance in oats induced by nuclear radiation. Agron. J., 46: 538–540.Google Scholar
  144. Lander E. I. and Botstein D. 1989. Mapping Mendelian factors underlying genetic traits using RFLP linkage maps. Genetics, 121: 185–199.PubMedGoogle Scholar
  145. Law C. N. 1972. Intervarietal substitution. Plant Breeding Institute Report. 1972.Google Scholar
  146. Leclercq P. 1966. Une sterilite Male Utilisable pour la production d’ hybrides simples de tournesol. Annales de l’Amelioration des plantes, 16: 135–144.Google Scholar
  147. Leonard K. J. 1969. Selection in heterogeneous populations of Puccinia graminis f. sp. avenae. Phytopathology, 59: 1851–1857.Google Scholar
  148. Leonard K. J. 1977. Selection pressures and plant pathogens. Annals of the New York Acad. of Sci., 287: 207–222.CrossRefGoogle Scholar
  149. Lonnquist J. H. 1964. Modification of the ear-to-row procedure for the improvement of maize populations. Crop Sci., 4: 227–228.CrossRefGoogle Scholar
  150. Love H. H. 1927. A programme for selecting and testing small grains in successive generations following hybridization. J. Amer. Soc. Agron., 19: 705–712.CrossRefGoogle Scholar
  151. Mahalanobis P. C. 1936. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India, 2: 49–55.Google Scholar
  152. Malecot G. 1948. Les mathematiques de 1 Heredete, Masson et cie. Paris.Google Scholar
  153. Malthus T. R. 1798. An essay on the Principle of Population. Oxford Univ. Press. Reprinted by McMillan & Co., London, 1926.Google Scholar
  154. Maluszynski M., Nichterlein K., Van Zantan L. and Ahloowalia B. S. 2000. Officially released mutant varieties—the FAO/IAEA database. Mutation Breeding Review. 12: 1–84.Google Scholar
  155. Mariani C., Gossele V., De Beuckeleer M., De Block M., Goldberg R. B., De Greef W. and Leemans J. 1992. A chimeric ribonuclease-inhibitor gene restorers fertility to male sterile plants. Nature, 357: 384–387.CrossRefGoogle Scholar
  156. Mather K. 1938. The Measurement of Linkage in Heredity. Methuen, London.Google Scholar
  157. Mather K. 1950. The genetic architecture of heterostyly in Primula sinensis. Evolution, 4: 340–352.CrossRefGoogle Scholar
  158. Mather K. 1956. Response to selection. Cold Spring Harbour Symp. on Quant. Biology, 20: 158–165.CrossRefGoogle Scholar
  159. Mather K. and Jinks J. L. 1982. Biometrical Genetics, 3rd edn. Chapman and Hall, London.Google Scholar
  160. Matsumura S. 1953. (ed), “Improvement of sugarbeet by means of triploidy.” No. 14 Science-Sha Tokyo, Japan.Google Scholar
  161. Mayr E. 1954. Change of genetic environment and evolution. In: Evolution as a process (eds. ) J. S. Huxley, A. C. Hardy and E. B. Ford. pp. 156–180. Allen and Unwin, London.Google Scholar
  162. McClintock B. 1951. Chromosome organization and gene expression. Cold Spring Harbour Symp. Quant. Biol., 16: 13.CrossRefGoogle Scholar
  163. McRaes D. H. 1985. Advances in chemical hybridization. In: Plant Breeding Reviews. (ed. ) J. Janick. Vol. 3. Avi Publishing Company, West Port, Connecticut, pp. 169–191.Google Scholar
  164. Mendel G. 1865. Versuche über Pflanzen-Hybriden. Verh. Naturforschung Wer. In Brünn Verh., 4: 3–47.Google Scholar
  165. Mertz E. T., Bates L. S. and Nelson O. E. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 145: 279–80.PubMedCrossRefGoogle Scholar
  166. Meyer V. G. and Meyer J. R. 1965. Cytoplasmically controlled male sterility in cotton. Crop Sci., 5: 444–448.CrossRefGoogle Scholar
  167. Mohan D. P. and Axtell J. D. 1975. DES induced high lysine mutants in sorghum. Pap. presented at Ninth Biennial Grain Sorghum Res. and Util. Cong. Lubbock, Tex., 4-6 Mar. 1975.Google Scholar
  168. Morgan T. H. 1911. An attempt to analyse the constitution of the chromosomes on the basis of sex limited inheritance in Drosophila. J. Exp. 2001, 11: 365.Google Scholar
  169. Muller H. J. 1927. Artificial transmutation of gene. Science, 66: 84–87.PubMedCrossRefGoogle Scholar
  170. Mullis K. B. 1990. The unusual origin of the polymerase chain reaction. Scientific American, 262: 56–65.PubMedCrossRefGoogle Scholar
  171. Mullis K. B., Faloona F., Scharf S., Saiki R., Horn G. and Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp. Quanti. Bio., 51: 263–273.CrossRefGoogle Scholar
  172. Munck L., Karlsson K. E. and Hagberg A. 1971. Selection and characterization of a high protein lysine variety from the world barley collection, pp. 544–58. In: Barley Genetics II. (ed. ) Nilan R., Pullman, Wash.Google Scholar
  173. Müntzing A. 1935. Triple hybrids between rye and two wheat species. Hereditas, Lund, 20: 137–160.CrossRefGoogle Scholar
  174. Müntzing A. 1939. Studies on the properties and the ways of production of rye-wheat amphidiploids. Hereditas, Lund., 25: 387–430.CrossRefGoogle Scholar
  175. Nei M. 1972. Genetic distance between populations. Amer. Naturalist, 106: 283–291.CrossRefGoogle Scholar
  176. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. (USA), 70: 3321–3323.CrossRefGoogle Scholar
  177. Nelson O. E. 1967. A mutant gene affecting protein synthesis in the maize endosperm. Genet., 21: 209–230.Google Scholar
  178. Nelson O. E. 1969. Genetic modification of protein quality in plant. Advance. Agron., 21: 171–194.CrossRefGoogle Scholar
  179. Nelson O. E., Mertz E. T. and Bates L. S. 1965. Second mutant gene affecting the amino-acid pattern of maize endosperm protein. Science, 150: 1469–1470.PubMedCrossRefGoogle Scholar
  180. Nelson R. R. 1975. Horizontal resistance in plants: Concepts, controversies and applications, pp. 1–20. In: Proc. of the Seminar on horizontal resistance to blast disease of rice, CIAT Publ. Ser. C. E. 9, Cali, Colombia.Google Scholar
  181. Nilsson-Ehle H. 1908. Surles travaux de selection × due troment et del avoine excute’s a Svalof 1900-1912. Bull. Mens. Renseign. Ag., Malad. Plantes IV, 6: 3–12.Google Scholar
  182. Nilsson-Ehle H. 1909. Kreuzungsuntersuchungen an Hafer und weisen. Lunds Univ. Aarskr. N. F. Afd. Ser. 2. Vol. 5(2): 1–22.Google Scholar
  183. Nilsson-Ehle H. 1948. The future possibilities of Swedish barley breeding. Svalöof 1886-1946, pp. 113–126.Google Scholar
  184. Oehlker F. 1943. Chromosome mutation in meiosis by chemicals. In: Mutation Research-Problems, Results and Prospects, (ed. ) C. Auerbach (1976), Champman and Hall, U. K.Google Scholar
  185. O’Mara J. G. 1940. Cytogenetic studies on Triticinae. I. A method for determining the effect of individual Secale chromosomes on Triticum. Genetics, 25: 401–408.Google Scholar
  186. Opsahl B. 1956. The discrimination of interaction and linkage in continuous variation. Biometrics. 12: 415–432.CrossRefGoogle Scholar
  187. Painter R. H. 1951. Insect resistance in crop plants. McMillan Co., New York.Google Scholar
  188. Panse V. G. 1940. The application of genetics to plant breeding 2. The inheritance of quantitative characters and plant breeding. J. Genet., 40: 283–302.CrossRefGoogle Scholar
  189. Panse V. G. and Sukhatme P. V. 1978. Statistical Methods for Agricultural Workers, ICAR, New Delhi.Google Scholar
  190. Parlevliet J. E. 1978. Race-specific aspects of polygenic resistance of barley to leaf rust, Puccinia hordei relation during epidemic development. Phytopathology, 67: 776–778.Google Scholar
  191. Parlevliet J. E. 1979. The multiline approach in cereals to rusts: Aspects, problems and possibilities. Indian J. Genet., 39: 22–29.Google Scholar
  192. Paterniani E. 1967. Inter population improvement. Reciprocal recurrent selection variations. Maize, 8: CIMMYT, Mexico.Google Scholar
  193. Paterniani E. A. 1973. Recent studies on heterosis. In: Agricultural Genetics. (ed. ) R. Moav. pp. 1–22. Natl. Counc. Res. Div. Jerusalem.Google Scholar
  194. Perkins J. M. and Jinks J. L. 1968a. Environmental and genotype-environmental components of variability. III. Multiple lines and crosses. Heredity, 23: 339–356.PubMedCrossRefGoogle Scholar
  195. Perkins J. M. and Jinks J. L. 1968b. Environmental and genotype-environmental components of variability. IV. Non-linear interactions for multiple inbred lines. Heredity, 23: 525–535.CrossRefGoogle Scholar
  196. Person C. Groth J. V. and Mylyk O. M. 1976. Genetic changes in host-parasite populations. Ann. Rev. Phytopathology. 14: 177–188.CrossRefGoogle Scholar
  197. Plaisted R. L. and Paterson L. C. 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. Amer. Potato. J., 36: 381–385.CrossRefGoogle Scholar
  198. Potrykus I. 1993. Gene transfer to plants: Approaches and available techniques. pp. 126–137. In: Plant Breeding — Principles and Prospects, (eds. ) M. D. Hayward, N. O. Bosemark and I, Ramagosa. Champman and Hall, London.Google Scholar
  199. Powers Le Roy. 1934. The nature of interaction of genes differentiating habit of growth in a cross between varieties of Triticum vulgare. J. Agr. Res., 49: 163–172.Google Scholar
  200. Powers Le Roy. 1951. Gene analysis by partitioning method when interactions of genes are involved. Bot. Gaz. 113: 1–23.CrossRefGoogle Scholar
  201. Rafalski J. A. and Tingey S. V. 1993. Genetic diagnostics in plant breeding RAPDs, microsatellites and machines. Trends Genet., 9: 275–279.PubMedCrossRefGoogle Scholar
  202. Ramage R. T. 1965. Balanced tertiary trisomics for use in hybrid seed production. Crop Sci., 5: 177–178.CrossRefGoogle Scholar
  203. Rapport I. A. 1946. Carbonyl compunds and the Chemical mechanism of mutation. C. R. Doklady Acad. Sci., USSR, 54: 65.Google Scholar
  204. Rapoport I. A. 1948. Alkylation of the gene molecule. Doklady Acad. Sci., USSR, 59: 1183–1186.Google Scholar
  205. Rasmusson J. M. 1935. Studies on the inhertiance of quantitative characters in Pisum. I. Preliminary note on the genetics of flowering. Hereditas, 20: 161–180.CrossRefGoogle Scholar
  206. Rhoades M. M. 1933. The Cytoplasmic inheritance of male-sterility in Zea mays. J. Genetics, 27: 71–93.CrossRefGoogle Scholar
  207. Rhoades M. M. 1955. The Cytogenetics of Maize. In: Corn and Corn Improvement. Academic Press, New York. pp. 123–219.Google Scholar
  208. Richey F. D. 1927. The convergent improvement of selfed lines of corn. Amer. Naturalist., 61: 430–49.CrossRefGoogle Scholar
  209. Rick C. M. and Fobes J. F. 1974. Association of an allozyme with nematode resistance. Rep. Tomato Genet. Coop. No. 24: 25.Google Scholar
  210. Riley R. and Chapman V. 1958. Genetical control of cytologically diploid behaviour of hexaploid wheat. Nature, 182: 713–715.CrossRefGoogle Scholar
  211. Rimpau W. 1891. Kreuzungsprodukte Landwirtschaftlicher Kulturpflanzen. Landwirtschaftl. Jahrb., 20: 335–371.Google Scholar
  212. Robinson R. A. 1969. Disease resistance terminology. Rev. Appl. Mycol., 48: 593–600.Google Scholar
  213. Roy Darbeshwar. 2000. Plant Breeding-Analysis and Exploitation of Variation. Narosa, New Delhi. Google Scholar
  214. Rutger J. N. 1992. Searching for apomixis in rice. In: Proc. Apomixis Workshop. Atlanta, G. A., pp. 36–39.Google Scholar
  215. Sapehin A. A. 1930. Rontgen-mutationen beim Weizen (Triticum vulgare). Der Zuchter, 2: 257–259.Google Scholar
  216. Sapehin A. A. 1936. X-ray mutants in soft-wheat, Bull. Appl. Bot. Genet. PL Breed. Ser. II., 9: 3–37.Google Scholar
  217. Savindan Y. 2000. Apomixis: Genetics and Breeding. Plant Breeding Reviews, 18: 13–83.Google Scholar
  218. Sax K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phasiolus vulgaris. Genetics, 8: 552–560.Google Scholar
  219. Schnell F. W. 1961. Some general formulations of linkage effects in inbreeding, Genetics, 46: 947–957.PubMedGoogle Scholar
  220. Sears E. R. 1954. The aneuploids of common wheat. Mo. Agr. Exp. Stn. Res. Bull., 572: 1–58.Google Scholar
  221. Sears E. R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brook haven Symposia in Biology, 9: 1–22.Google Scholar
  222. Sears E. R. and Okamoto M. 1958. Intergenomic relationship in hexaploid wheat. Proc. X. Int. Cong. Genet., Montreal. Can. Univ. of Toronto. Press. 2: 258–259.Google Scholar
  223. Shamel A. D. 1905. The effect of inbreeding in plants. USDA Yearbook, Pp. 377–392.Google Scholar
  224. Shull G. H. 1908. The composition of a field of maize. Am. Breeders’ Assoc. Rep., 4: 296–301.Google Scholar
  225. Shull G. H. 1909. A pure line method of corn breeding. Am. Breeders’ Assoc. Rep., 5: 51–59.Google Scholar
  226. Shull G. H. 1914. Duplicated genes for capsule form in Bursa bursa pastoris. Z. Ind. Abstr. Ver., 12: 97–149.Google Scholar
  227. Simmonds N. W. 1979. Principles of Crop Improvement. Longman, London, U. K.Google Scholar
  228. Simmonds N. W. 1985. Two stage selection strategy in plant breeding. Heredity, 55: 393–399.CrossRefGoogle Scholar
  229. Singh R. and Axtell J. D. 1973. High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci., 13: 535–539.CrossRefGoogle Scholar
  230. Skoog F. and Miller C. O. 1957. Chemical regulation of growth and organ formation in plant tissues cultivated in vitro. In: Biological Action of Growth Substances. Symp. Soc. Exp. Biol., 11: 118–131.Google Scholar
  231. Smith. 1936. A discriminant function for plant selection. Ann. Eng., 7: 240–250.Google Scholar
  232. Spillman W. J. 1909. The Hybrid wheats. Wash. Agr. Exp. Sta. Bull., 89.Google Scholar
  233. Sprague G. F. 1946. Early testing of inbred lines of corn. J. Am. Soc. Agron., 38: 108–17.CrossRefGoogle Scholar
  234. Sprague G. F. 1963. Orietation and objectives. Statistical Genetics and Plant Breeding, (eds. ) W. D. Hanson and H. F. Robinson. Natl. Acad. Sciences. NRC Publication 982, IX-XV.Google Scholar
  235. Sprague G. F. and Tatum L. A. 1942. General vs. specific combining ability in single crosses of corn. J. Amer. Soc. Agron., 34: 923–932.CrossRefGoogle Scholar
  236. Springer P. S. 2000. Gene Traps: Tools for Plant Development and Genomics. Plant Cell., 12: 1007–1020.PubMedGoogle Scholar
  237. Stadler L. J. 1928. Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci., USA, 14: 69–75.PubMedCrossRefGoogle Scholar
  238. Stadler L. J. 1930. Some genetic effects of X-rays in plants, J. Hered., 21: 3–19.Google Scholar
  239. Stadler L. J. 1944. Game selection in corn breeding. J. Am. Soc. Agron., 36: 988–89.Google Scholar
  240. Stanford J. C. 1990. Biolistic plant transformation. Physiologica Planterum., 79: 206–209.CrossRefGoogle Scholar
  241. Stefansson B. R., Houghen F. W. and Bowney R. K. 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci., 41: 213–215.CrossRefGoogle Scholar
  242. Steward F. C., Mapes M. O. and Mears K. 1958. Growth and organized development of cultured cells, II: Organization in cultures grown from freely suspended cells. Amer. Jour. Bot., 45: 705–708.CrossRefGoogle Scholar
  243. Sturtevant A. H. 1913. The linear arrangement of six sex linked factors in Drosophila, as shown by their mode of association. Jour. Exp. Zool., 14: 43–59. The first paper on gene mapping. (Reprinted in the Classic Paper in Genetics. (ed. ) Peters J. A. (1959), Prentice Hall, Englewood Cliffs, N. J.CrossRefGoogle Scholar
  244. Suneson C. A. 1956. An evolutionary plant breeding method. Agron. J., 48: 188–191.CrossRefGoogle Scholar
  245. The Arabidopsis Genome Initiative (TAGI). 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.CrossRefGoogle Scholar
  246. Taliafero C. M. and Bashaw E. C. 1966. Inheritance and control of obligate apomixis in breeding Buffelgrass (Cenchrus ciliaris L. ). Crop Sci., 6: 473–476.CrossRefGoogle Scholar
  247. Tanksley S. D. and Rick C. M. 1980. Isozyme linkage map of tomato: applications in genetics and plant breeding. Theor. Appl. Genet., 57: 161–170.CrossRefGoogle Scholar
  248. Tschermack E. Von. 1900. Über Kunstliche Kreuzung bei Pisum sativum, Ber. der Bot. Ges., 18: 232–239.Google Scholar
  249. Thoday J. M. 1961. Location of polygenes. Nature, 191: 368–370.CrossRefGoogle Scholar
  250. Thoday J. M. 1972. Disruptive selection. Proc. Royal. Soc. London. B., 182: 109–143.CrossRefGoogle Scholar
  251. Van der Plank J. E. 1963. Plant Diseases. Epidemics and Control. Academic Press, New York.Google Scholar
  252. Van der Plank J. E. 1968. Disease resistance in plants. Academic Press, New York and London.Google Scholar
  253. Van der Plank J. E. 1982. Host-pathogen interactions in plant diseases. Academic Press, New York.Google Scholar
  254. Van der Veen. 1959. Test of non-allelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines. Genetics, 12: 415–432.Google Scholar
  255. Vasal S. K. 1994. High quality protein corn. p. 80–121. In: Specialty corns, (ed. ) A. R. Hallauer.Google Scholar
  256. Vasal S. K., Villegas E. and Bauer R. 1979. Present status of breeding quality protein maize. pp. 127–48. In: Proc. Symp. On seed protein Improvement in cereals and grain legumes, Neuherberg, Fed. Repub. Ger. 4-8 Sept. 1978.Google Scholar
  257. Vasil I. K. 1978. Plant tissue culture and crop improvement. Int. Assoc. Plant Tissue Culture Newsletter, 26: 2–10.Google Scholar
  258. Vavilov N. I. 1926. Studies on the origin of cultivated plants. Bulletin of Applied Botany and Plant Breeding. 16: 1–245.Google Scholar
  259. Vavilov N. I. 1951. The origin, variation, immunity and breeding of cultivated plants. Translated from Russian by K. S. Chester. Chron. Bot., 13: 1–366.Google Scholar
  260. Venkataraman T. S. 1938. Hybridization in and with the genus Saccharum. Proc. Ind. Sci Congr., 25: (Part 2, Sec. 9): 267–284.Google Scholar
  261. Venter J. C. et al. 2001. The sequence of the human genome. Science, 291: 1304–1351.PubMedCrossRefGoogle Scholar
  262. Vos P., Hogers R., Bleeker M., Reijans M., Van der Lee T., Homes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407–4414.PubMedCrossRefGoogle Scholar
  263. Weinberg W. 1908. Über den nachweis der Vererbung beim Menschen. (Translated into English and printed in collection of Boyer S. H. (1963) and of Corwin H. O. and Jenkins J. B. 1976).Google Scholar
  264. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531–6535.PubMedCrossRefGoogle Scholar
  265. Winkler H. 1916. Über die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeitschr. Bot., 8: 417–531.Google Scholar
  266. Wolfe J. A., Barrett J. A., Shattock R. C., Shaw D. S. and Whitebread R. 1976. Phenotype-phenotype analysis: Field application of the gene-for-gene hypothesis in host-pathogen relations. Ann. Appl. Bio., 82: 369–374.CrossRefGoogle Scholar
  267. Wright S. 1921. System of mating. Genetics, 6: 111–178.PubMedGoogle Scholar
  268. Wright S. 1931. Evolution in Mendelian population. Genetics, 16: 97–159.PubMedGoogle Scholar
  269. Wright S. 1935. The analysis of variance and the correlation between relatives with respect to diviations from an optimum. J. Genetics, 30: 243–256.CrossRefGoogle Scholar
  270. Yates F. 1937. The design and analysis of factorial experiments. Imperial Bureau of Soil Science, Harpenden.Google Scholar
  271. Ye X., Al-Babili S., Kloti A., Zhang J., Lucca P., Bayer P. and Potrykus I. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science, 287: 303–305.PubMedCrossRefGoogle Scholar
  272. Yule G. V. 1906. On the theory of inheritance of quantitative compound characters on the basis of Mendel’s laws. Third Int. Conf. Genet., 140–142.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. C. Kharkwal
    • 1
  • Darbeshwar Roy
    • 2
  1. 1.Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.G.B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations