Advertisement

Plant Breeding pp 419-450 | Cite as

Advances in Hybrid Breeding Methodology

  • B. S. Dhillon
  • A. K. Singh
  • B. P. S. Lather
  • G. Srinivasan

Abstract

Hybrid cultivars are the first generation (F1) progeny of a cross between two or more selected and genetically diverse parents, and these exploit heterosis. Heterosis is defined as increased vigour, size, fruitfulness, speed of development, resistance to disease and insect-pests or to climatic rigours of any kind in F1 generation. Dominance of linked loci, over dominance, and epistatic gene action were proposed to explain the genetic basis of heterosis. Logically all types of gene action controlling the inheritance of a trait should be expected to contribute to heterosis. Hybrid breeding started in maize, and experiences in this crop have greatly contributed to the development of hybrid breeding methodology which is continuously evolving and expanding. In sorghum, pearl millet, sunflower etc., hybrid breeding started with the development of male sterility and fertility restoration system for pollination control. The technology was largely confined to cross-pollinated crops with a few exceptions like tomato and cotton. In the late 1970s, the success of hybrid rice, a strictly self-pollinated crop in China provided an impetus to hybrid breeding. The possibility to use environment-sensitive genetic male sterility and chemical hybridizing agents has opened the avenue of widening the base of parental germplasm and enhancing the magnitude of heterosis; and it is likely to simplify hybrid breeding and seed production. Further, the use of recurrent selection to develop hybrid breeding oriented source germplasm needs greater emphasis. The application of biotechnological techniques such as doubled haploidy, somatic hybridization, analysis of molecular diversity and marker assisted selection are expected to provide cutting edge to hybrid breeding; for which biotechnology needs to be integrated with hybrid breeding. Another exciting area is the development of apomictic hybrid that should greatly expand the coverage by hybrid cultivars.

Keywords

Inbred Line Male Sterility Cytoplasmic Male Sterility General Combine Ability Specific Combine Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali J., Devakumar C., Zaman F. U. and Sadananda A. R. 1990. Relative gametocidal potency of oxanilates and arsenates in rice. p. 18–19. In: Extended Summary, Proc. Intern. Symp. on Rice Research: New Frontiers, Dte. of Rice Research, Hyderabad, India.Google Scholar
  2. Allard R. W. and Bradshaw A. D. 1964. Implications of genotype-environment interactions in applied plant breeding. Crop Sci., 4: 503–508.Google Scholar
  3. Allison J. C. S. and Curnow R. N. 1966. On the choice of tester parent for the breeding of synthetic varieties of maize (Zea mays L. ). Crop Sci., 6: 541–544.Google Scholar
  4. Aman M. A. and Sarkar K. R. 1978. Selection for haploidy inducing potential in maize. Indian J. Genet., 38: 452–457.Google Scholar
  5. Anonynmous. 1971. Certification Handbook. Publ. 23. Rv. 1984. Assoc. Off. Seed. Cert. Agencies. Raleigh, USA.Google Scholar
  6. Asker S. E. and Jerling L. 1992. Apomixis in Plants. 298. CRC Press, Boca Raton, Florida.Google Scholar
  7. Bailey T. B. Jr. 1977. Selection limits in self-fertilizing population following the cross of homozygous lines. p. 399–412. In: Proc. Int. Conf. Nat. Genet. (eds. ) E. Pollak, O. Kempthorne, and T. B. Bailey Jr., Iowa State Univeristy Press, Ames, USA.Google Scholar
  8. Bailey T. B. Jr. and Comstock R. E. 1976. Linkage and synthesis of better genotypes in self-fertilizing species. Crop Sci., 16: 363–370.Google Scholar
  9. Balko L. G. and Russell W. A. 1980. Effects of rate of nitrogen fertilizer on maize inbred lines and hybrid progeny. II. Correlations among agronomic traits. Maydica, 25: 81–94.Google Scholar
  10. Bauer P. J. and Green C. C. 1996. Evaluation of F2 genotypes of cotton for conservation tillage. Crop Sci., 36: 655–658.Google Scholar
  11. Bansal U. K., Dhillon B. S. and Saxena V. K. 1993. Manipulation of flowering date in maize. p. 88–89. In: Heterosis Breeding in Crop Plants-Theory and Application, (eds. ) M. M. Verma, D. S. Virk and G. S. Chahal. Crop Improv. Soc. of India, Ludhiana.Google Scholar
  12. Barclay I. R. 1975. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature, 256: 410–411.Google Scholar
  13. Bashaw E. C. and Hussey M. A. 1992. Apomixis in Cenchrus. p 1–4. Proc. Apomixis Workshop, Atlanta, G. A. 11-12 Feb. 1992. Nat. Technical Inform. Serv. Springfield, V. A.Google Scholar
  14. Bauman L. F. 1967. Seed coating to delay emergence. Hyh. Corn Ind. Res. Conf., 22: 49–52.Google Scholar
  15. Bauman L. F. 1981. Review of methods used by breeders to develop superior corn inbreds. Corn Sorghum Res. Conf., 36: 199–208.Google Scholar
  16. Beal J. F. 1878. Report of the professor of botany and horticulture. p. 445–457. Report of Michigan State Board of Agric., Lousing, USA.Google Scholar
  17. Beckett J. B. 1971. Classification of male sterile cytoplasm in maize (Zea mays L. ). Crop Sci., 11: 724–727.Google Scholar
  18. Bernardo R. 1992. Retention of genetically superior inbred lines during early generation test crossing in maize. Crop Sci., 32: 923–927.Google Scholar
  19. Bernardo R. 1994. Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci., 34: 20–25.Google Scholar
  20. Bernardo R. 1996. Best linear unbiased prediction of maize single-cross performance. Crop Sci., 36: 50–56.Google Scholar
  21. Bernardo R. 1999. Best linear unbiased predictor analysis, p. 269–276. In: Genetics and Exploitation of Heterosis in Crops. (eds. ) J. G. Coors and S. Pandey. Am. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  22. Bogenschutz T. G. and Russell W. A. 1986. An evaluation for genetic variation within inbred lines maintained by sib-mating and self-pollination. Euphytica, 35: 403–412.Google Scholar
  23. Boppenmair J., Melchinger A. E., Brunklaus-Jung E., Geiger H. H. and Herrmann R. G. 1992. Genetic diversity for RFLPs in European maize inbreds: I. Relation to performance of Flint × Dent crosses for forage traits. Crop Sci., 32: 895–902.Google Scholar
  24. Briggle L. W. 1963. Heterosis in wheat — a review. Crop Sci., 3: 407–412.Google Scholar
  25. Brim C. A. 1966. A modified pedigree method in soybean. Crop Sci., 6: 220.Google Scholar
  26. Brim C. A. and Stuber C. W. 1973. Application of genetic male sterility to recurrent selection schemes in Soybean. Crop Sci., 13: 528–530.Google Scholar
  27. Chang-Jian J., Cockerham C. C. and Moll R. H. 1990. Inter and intra-cultivar effects of selection on heterosis. Crop Sci., 30: 44–49.Google Scholar
  28. Chase S. S. 1952. Production of homozygous diploids of maize from monoploids. Agron. J., 44: 263–267.Google Scholar
  29. Cloninger F. D., Zuber M. S. and Horrocks R. D. 1974. Synchronization of flowering of corn (Zea mays L. ) by clipping young plants. Agron. J., 66: 270–272.Google Scholar
  30. Cockerham C. C. 1961. Implications of genetic variance in hybrid breeding programme. Crop Sci., 1: 47–52.Google Scholar
  31. Cockerham C. C. 1967. Prediction of double crosses from single crosses. Zuechter, 37: 160–169.Google Scholar
  32. Comstock R. E. 1979. Inbred line vs the population as tester in reciprocal recurrent selection. Crop Sci., 19: 881–886.Google Scholar
  33. Comstock R. E., Robinson H. F. and Harvey P. H. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J., 41: 360–367.Google Scholar
  34. Cowan R. J. 1972. Seed certification. p. 371–397. In: Seed Biology. (ed. ) T. T. Kozlowski. Academic Press, New York, USA.Google Scholar
  35. Cramer M. M. and Kannenberg L. W. 1992. Five years of HOPE: the hierarchical open-ended corn breeding system. Crop Sci., 32: 1163–1171.Google Scholar
  36. Darrah L. L. and Zuber M. S. 1986. 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci., 26: 1109–1113.Google Scholar
  37. Davis D. D. 1998. Cotton, p. 357–380. In: Hybrid Cultivar Development, (eds. ) S. S. Banga and S. K. Banga, Narosa Publishing House, New Delhi.Google Scholar
  38. Davis R. L. 1927. Report of the plant breeder. Rep. Puerto Rice Agric. Exp. Stn., Puerto Rico, pp. 14–15.Google Scholar
  39. Dhillon B. S. 1975. The application of partial-diallel crosses in plant breeding — a review. Crop Improv., 2: 1–8.Google Scholar
  40. Dhillon B. S. 1998a. Recurrent selection for combining ability and performance per se of cross-bred and selfed families. Maydica, 43: 155–160.Google Scholar
  41. Dhillon B. S. 1998b. Quantitative-genetic implications of the use of cytoplasmic-genic male sterility in relation to the types of hybrids in crop plants. Crop Improv., 25: 1–5.Google Scholar
  42. Dhillon B. S. 1991a. Recurrent mass selection based on selfed-plant evaluation in allogamous species. Crop Sci., 31: 1075–1077.Google Scholar
  43. Dhillon B. S. 1991b. Alternate recurrent selection of S1 and half-sib families for intrapopulation improvement. Maydica, 36: 45–48.Google Scholar
  44. Dhillon B. S. and Khehra A. S. 1989. Modified S1 recurrent selection in maize improvement. Crop Sci., 29: 226–228.Google Scholar
  45. Dhillon B. S. and Prasanna B. M. 2001. Maize. pp. 147–185. In: Breeding Field Crops, (ed. ) V. L. Chopra, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.Google Scholar
  46. Dhillon B. S., Boppermaier J., Pollmer W. G., Herrmann R. G. and Melchinger A. E. 1993. Relationship of restriction fragment length polymorphism among European maize inbreds with ear dry matter yield of their hybrids. Maydica, 38: 245–248.Google Scholar
  47. Dhillon B. S., Malhi N. S. and Saxena V. K. 1997. Development and improvement of heterotic pools in maize. p. 74–75. In: Proc. Intl. Symp. on Genetics and Exploitation of Heterosis in Crops, CIMMYT, Mexico.Google Scholar
  48. Dhillon B. S., Malhi N. S., Saxena V. K., Kapoor W. R., Pal S. S., Singh M. and Khehra A. S. 1995. Paras — first single cross hybrid of maize in India. J. Res. Punjab Agric. Univ., 32: 238–239.Google Scholar
  49. Dubreuil P., Dufour P., Krejci E., Causse M., Vienne D., Gallais A. and Charcosset A. 1996. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci., 36: 790–799.Google Scholar
  50. Dudley J. W. 1982. Theory of transfer of alleles. Crop Sci., 22: 631–637.Google Scholar
  51. Dudley J. W. 1984. Identifying parents for use in a pedigree breeding programme. Corn Sorghum Res. Conf., 39: 176–188.Google Scholar
  52. Dudley J. W. 1987. Modification of methods for identifying inbred lines useful for improving parents of elite line crosses. Crop Sci., 27: 944–947.Google Scholar
  53. Dudley J. W., Saghai Maroof M. A. and Ruefner G. K. 1991. Molecular markers and grouping of parents in maize breeding programs. Crop Sc., 31: 718–728.Google Scholar
  54. Duvick D. N. 1999. Heterosis: feeding people and protecting natural resources, p. 19–29. In: Genetics and Exploitation of Hectorsis in Crops, (eds. ) J. G. Coors and S. Pandey, Am. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  55. Duvick D. N. 1965. Cytoplasmic pollen sterility in corn. Adv. Genet., 13: 1–56.Google Scholar
  56. Duvick D. N. 1966. Influence of morphology and sterility on breeding methodology, p. 85–138. In: Plant Breeding, (ed. ) K. J. Frey, Iowa state university press, Ames, IA. Vol. I.Google Scholar
  57. Duvick D. N. 1974. Continuous backcrossing to transfer prolificacy to a single inbred line of maize. Crop Sci., 14: 69–71.Google Scholar
  58. Duvick D. N. 1977. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 22: 187–196.Google Scholar
  59. Eberhart S. A. 1964. Theoretical relations among single, three-way and double-cross hybrids. Biometrics, 20: 522–539.Google Scholar
  60. Eberhart S. A. 1970. Factors affecting efficiencies of breeding methods. Afr. Soils, 15: 669–680.Google Scholar
  61. Eberhart S. A., Russell W. A. and Penny L. H. 1964. Double-cross hybrid prediction when epistasis is present. Crop Sci., 4: 363–366.Google Scholar
  62. Eyherabide G. H. and Hallauer A. R. 1991. Reciprocal full-sib recurrent selection in maize. I. Direct and indirect responses. Crop Sci., 31: 952–959.Google Scholar
  63. Falconer D. S. 1988. Introduction of Quantitative Genetics. Longman, London, UK.Google Scholar
  64. Fowler W. 1967. Cultural practices for today’s seed fields. Hybrid Corn Ind. Res. Conf., 22: 53–58.Google Scholar
  65. Gama E. E. C. and Hallauer A. R. 1977. Relation between inbred and hybrid traits in maize. Crop Sci., 17: 703–706.Google Scholar
  66. Gardner C. O. 1961. An evaluation of effects of mass selection and seed iradiation with thermal neutrons on yield of corn. Crop Sci., 18: 387–390.Google Scholar
  67. Geadelman J. L. and Peterson R. H. 1978. Effects of two yield component selection procedures on maize. Crop Sci., 18: 387–390.Google Scholar
  68. Gerloff J. W. and Smith O. S. 1988. Choice of method for identifying germplasm with superior alleles. I. Theoretical results. Theor. Appl. Genet., 76: 209–216.Google Scholar
  69. Godshalk E. B., Lee M. and Lamkey K. R. 1990. Relationship of restriction fragment length polymorphism to single cross hybrid performance in maize. Theor. Appl. Genet., 80: 273–280.Google Scholar
  70. Goodsell S. 1961. Male sterility in corn by androgenesis. Crop Sci., 1: 227–228.Google Scholar
  71. Green J. M. 1948. Relative value of two testers for estimating topcross performance in segregating maize populations. J. Am. Soc. Agron., 40: 45–57.Google Scholar
  72. Griffing B. 1956. Detasseling responses in corn. Agron. J., 48: 247–249.Google Scholar
  73. Hadjinov M. I., Sherbak V. S., Benko N. I., Gusev V. P., Sukhorzheus-Kaya T. B. and Voronova L. P. 1982. Interrelationships between isozyome diversity and combining ability in maize lines. Maydica, 27: 135–139.Google Scholar
  74. Hallauer A. R. 1973. Hybrid development and population improvement in reciprocal full-sib selection. Egyptian J. Genet. Cytol., 1: 84–101.Google Scholar
  75. Hallauer A. R. 1975. Relation of gene action and types of testers in maize breeding procedures. Corn Sorghum Res. Conf., 30: 150–165.Google Scholar
  76. Hallauer A. R. 1990. Methods used in developing maize inbreds. Maydica, 35: 1–16.Google Scholar
  77. Hallauer A. R. 1992. Recurrent selection in maize. Plant Breed. Rev., 9: 115–179.Google Scholar
  78. Hallauer A. R. and Lopez-Perez E. 1979. Comparisons among testers for evaluating lines of corn. Corn Sorghum Res. Conf., 34: 57–75.Google Scholar
  79. Hallauer A. R. and Miranda J. B. 1988. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames, Iowa.Google Scholar
  80. Hallauer A. R. and Eberhart S. A. 1970. Reciprocal full-sib selection. Crop Sci., 10: 315–316.Google Scholar
  81. Hallauer A. R., Russell W. A. and Lamkey K. R. 1988. Corn breeding, p. 463–564. In: Corn and Corn Improvement. (eds. ) G. F. Sprague and J. W. Dudley, Am. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  82. Hanna W. P., Ozias-Akins and Roche D. 1999. Apomixis and heterosis, p. 335–342. In: Genetics and Exploitation of Heterosis in Crops. (eds. ) J. G. Coors and S. Pandey. Am. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  83. Hanna W. P., Roche D. and Ozias-Akins P. 1996. Use of apomixis in crop improvement-traditional and molecular approaches. In: Proc. Third International Symp. on Hybrid Rice, Hyderabad, India, 14-16 Nov. 1996.Google Scholar
  84. Harlan H. V. and Pope M. N. 1922. The use and value of backcrosses in small grain breeding. J. Hered., 13: 319–322.Google Scholar
  85. Hayes H. K. 1963. A Professor’s Story of Hybrid Corn, Burgess, Minneapolis, USA.Google Scholar
  86. Heidrich-Sobrinho E. and Corderio A. R. 1975. Codominant isoenzymic alleles as markers of genetic diversity correlated with heterosis in maize (Zea mays L. ). Theor. Appl. Genet., 46: 197–199.Google Scholar
  87. Henderson C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31: 423–447.PubMedGoogle Scholar
  88. Ho Y. T. and Comstock R. E. 1980. Combining superior alleles from two homozygous populations in a cross-fertilizing species. Genet. Res., 36: 277–287.Google Scholar
  89. Horner E. S., Lundy H. W., Lutrick M. C. and Chapman W. H. 1973. Comparison of three methods of recurrent selection in maize. Crop Sci., 13: 485–489.Google Scholar
  90. Horner E. S., Lutrick M. C, Chapman W. H. and Martin F. G. 1976. Effect of recurrent selection for combining ability with a single cross tester in maize. Crop Sci., 16: 5–8.Google Scholar
  91. Hull F. H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron., 37: 134–45.Google Scholar
  92. Humberto Reyes-Valdes M. 2000. A model for marker-based selection in gene introgression breeding programs. Crop Sci., 40: 91–98.Google Scholar
  93. Hunter R. B. and Kannenberg L. W. 1971. Isozyme characterization of corn (Zea mays L. ) inbreds and its relationship to single cross hybrid performance. Can. J. Genet. Cytol., 13: 649–655.Google Scholar
  94. Ichikawa N., Kishimoto N., Inagaki A., Nakamura A., Koshino Y., Yokozeki Y., Oka M., Samoto S., Akagi H., Higo K., Shiniyo C., Fujimura J. and Shimada H. 1997. A rapid PCR-aided selection of rice line containing the Rf-1 gene which is involved in restoration of cytoplasmic male sterility. Mol. Breeding, 3: 195–202.Google Scholar
  95. Ikehashi H. and Araki H. 1984. Varietal screening for compatibility type revealed in F1 fertility of crosses in rice. Jpn. J. Breed, 34: 304–312.Google Scholar
  96. Jain A., Bhatia S., Banga S. S., Prakash S. and Lakshmikumaran M. 1994. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian Mustard (Brassica juncea) and its relationship to heterosis. Theor. Appl. Genet., 88: 116–122.Google Scholar
  97. Jain S. K. and Suneson C. A. 1963. Male sterility for increased outbreeding in populations of barley. Nature, 199: 407–408.Google Scholar
  98. Jenkins M. T. 1934. Methods of estimating the performance of double crosses in corn. J. Am. Soc. Agron., 26: 199–204.Google Scholar
  99. Jenkins M. T. 1935. The effect of inbreeding and of selection within inbred lines of maize upon hybrids made after successive generations of selfing. Iowa State J. Sci., 9: 429–450.Google Scholar
  100. Jenkins M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Soc. Agron., 32: 55–63.Google Scholar
  101. Jenkins M. T. and Brunson A. M. 1932. Methods of testing inbred lines of maize in crossbred combination. J. Am. Soc. Agron., 24: 523–530.Google Scholar
  102. Johnson G. R. 1980. Simple quantitative theory for selections during inbred line development. III. Corn Breeder’s School, 16: 1–18.Google Scholar
  103. Jones D. F. 1918. The effects of inbreeding and crossbreeding upon development. Conn Agric. Exp. Stn. Bull, 207: 5–100.Google Scholar
  104. Jones H. A. and Clarke A. E. 1943. Inheritence of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci., 43: 189–194.Google Scholar
  105. Jones J. W. 1926. Hybrid vigour in rice. J. Am. Soc. Agron., 18: 424–428.Google Scholar
  106. Jones M. D. and Brooks J. S. 1952. Effect of tree barriers on outcrossing in corn. Oklahoma Agric. Exp. Stn. Tech. Bull., T-45: 3–11.Google Scholar
  107. Kahler A. L., Hallauer A. R. and Gardner C. O. 1986. Allozyme polymorphisms within and among open-pollinated and adapted exotic populations of maize. Theor. Appl. Genet., 72: 592–601.Google Scholar
  108. Kao K. N. and Kasha K. J. 1969. Haploidy from interspecific crosses with tetraploid barley, p. 82–88. In: Barley Genetics. (ed. ) R. A. Nilan, Washington State Univ. Press, Washington.Google Scholar
  109. Kaul M. L. H. 1998. Male sterility: classification and concept, p. 17–45. In: Hybrid Cultivar Development. (eds. ) S. S. Banga and S. K. Banga, Narosa Publishing House, New Delhi.Google Scholar
  110. Kempthorne O. and Curnow R. N. 1961. The partial diallel cross. Biometrics, 17: 229–250.Google Scholar
  111. Kermicle J. L. 1969. Androgenesis conditioned by a mutation in maize. Science, 166: 1422–1424.PubMedGoogle Scholar
  112. Kim C. H. and Rutger J. N. 1988. Heterosis in rice. p. 39–54. In Hybrid Rice. IRRI, Manila, Philippines.Google Scholar
  113. Kirti P. B., Banga S. S., Prakash S. and Chopra V. L. 1995a. Transfer of ogu cytoplasmic male sterility to Brassica juncea and improvement of male sterility line through somatic cell fusion. Theor. Appl. Genet., 91: 517–521.Google Scholar
  114. Kirti P. B., Mohapatra T., Khanna H. and Prakash S. 1995b. Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep., 14: 593–597.Google Scholar
  115. Lamkey K. R., Schnicker B. J. and Melchinger A. E. 1995. Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci., 35: 1272–1281.Google Scholar
  116. Landi P and Frascaroli E. 1995. Response to a modified reciprocal recurrent selection in two maize synthetics. Crop Sci., 35: 791–797.Google Scholar
  117. Laurie D. A. and Bennett M. D. 1988. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet., 76: 393–397.Google Scholar
  118. Lee M., Godshalk E. B., Lamkey K. R. and Woodman W. W. 1989. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci., 29: 1067–1071.Google Scholar
  119. Liu K., Wang J., Li H., Xu C., Liu A., Li X. and Zhang Q. 1997. A genome-wide analysis of wide compatibility in rice and the precise location of S5 locus in the molecular map. Theor. Appl. Genet., 95: 809–814.Google Scholar
  120. Mariani C., Beukeber M. D., Truettever J., Leemans J. and Goldberg R. B. 1990. Induction of male sterility in plants by a chimeric ribonuclease gene. Nature, 347: 737–741.Google Scholar
  121. Mariani C., Gossele V., De Beuckeber M., De Block M., Goldberg R. B., De Greef W. and Leemans J. 1992. A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature (London), 356: 385–387.Google Scholar
  122. Martin J. M., Talbert L. E., Lanning S. P. and Blake N. K. 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci., 35: 104–108.Google Scholar
  123. Maruyama K., Araki H. and Kato H. 1991. Thermosensitive genetic male sterility induced by irradiation. In: Rice Genetics II. IRRI, Manila, Philippines, p. 227–235.Google Scholar
  124. Melchinger A. E. 1987. Expectation of means and variances of testcrosses produced from F2 and backcross individuals and their selfed progenies. Heredity, 59: 105–115.Google Scholar
  125. Melchinger A. E., Boppenmaier J., Dhillon B. S., Pollmer W. G. and Herrmann R. G. 1992. Genetic diversity for RFLPs in European maize inbreds. II. Relation to the performance of hybrids within versus between heterotic groups for forage trait. Theor. Appl. Genet., 84: 672–681.Google Scholar
  126. Melchinger A. E., Lee M., Lamkey K. R., Hailauer A. R. and Woodman W. L. 1990. Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genetics, 80: 488–496.Google Scholar
  127. Melchinger A. E., Schmidt W. and Geiger H. H. 1988. Comparison of testcrosses produced from F2 and first-backcross populations in maize. Crop Sci., 28: 743–749.Google Scholar
  128. Mishra G. P., Singh R. K., Mohapatra T., Singh A. K., Prabhu K. V. and Zaman F. U. 2001. Molecular mapping of a fertility restorer gene in Basmati rice using microsatellite markers. Indian J. Genet., 61: 348–349.Google Scholar
  129. Moll R. H. and Hasnon W. D. 1984. Comparisons of effects of intrapopulation vs. interpopulation selection in maize. Crop Sci., 24: 1047–1052.Google Scholar
  130. Moll R. H., Jackson W. A. and Mikkelson R. L. 1994. Recurrent selection for maize grain yield: Dry matter and nitrogen accumulation and partitioning changes. Crop Sci., 34: 874–881.Google Scholar
  131. Moll R. H., Lonnquist J. H., Fortuna J. V. and Johnson E. C. 1965. The relation of heterosis and genetic divergence in maize. Genetics, 52: 139–144.PubMedGoogle Scholar
  132. Moll R. H., Salhuana W. S. and Robinson H. F. 1962. Heterosis and genetic diversity in variety crosses in maize. Crop Sci., 2: 197–198.Google Scholar
  133. Otsuka Y., Eberhart S. A. and Russell W. A. 1972. Comparison of prediction formulae for maize hybrids. Crop Sci., 12: 325–331.Google Scholar
  134. Parmar K. S., Siddiq E. A. and Swaminathan M. S. 1979. Chemical induction of male sterility in rice. Indian J. Genet., 39: 529–541.Google Scholar
  135. Perez A. T., Chang T. T., Beachell H. M., Vergara B. S. and Marciano A. P. 1973. Induction of male sterility in rice with ethrel and RH-531. SABRAO News Lett., 5: 133–139.Google Scholar
  136. Popi J., Rajnpreht J., Kannenberg L. W. and Pauls K. P. 2000. Random amplified polymorphic DNA-based evaluation of diversity in the hierarchical, open-ended population enrichment maize breeding system. Crop Sci., 40: 619–625.Google Scholar
  137. Rademacher M. A. M., Hailauer A. R. and Russell W. A. 1999. Comparative response of two reciprocal recurrent selection methods in BS21 and BS22 maize population. Crop Sci., 39: 87–97.Google Scholar
  138. Rawlings J. C. and Thompson D. L. 1962. Performance level as criterion for the choice of maize testers. Crop Sci., 2: 217–220.Google Scholar
  139. Rhodes M. M. 1931. Cytoplasmic inheritance of male sterility in Zea mays. Science, 73: 340–341.Google Scholar
  140. Richey F. D. 1922. The experimental basis for the present status of corn breeding. J. Am. Soc. Agron., 14: 1–17.Google Scholar
  141. Richey F. D. 1927. The covergent improvement of selfed lines of corn. Am. Nat., 61: 430–449.Google Scholar
  142. Rinke E. H. and Sentz J. C. 1961. Moving Corn-Belt germplasm northward. Hybrid Corn Ind. Conf., 16: 53–56.Google Scholar
  143. Russell W. A. 1985. Comparison of hybrid performance of maize inbred lines developed from the original and improved cycles of BSSS. Maydica, 30: 407–419.Google Scholar
  144. Russell W. A. 1986. Contributions of breeding to maize improvement in the United States, 1920s–1980s. Iowa States J. Res., 61: 5–34.Google Scholar
  145. Russell W. A. and Eberhart S. A. 1975. Hybrid performance of selected maize lines from reciprocal recurrent selection and testcross selection programmes. Crop Sci., 15: 1–4.Google Scholar
  146. Russell W. A., Blackburn D. J. and Lamkey K. R. 1992. Evaluation of a modified reciprocal recurrent selection procedure for maize improvement. Maydica, 37: 61–67.Google Scholar
  147. Russell W. A., Sprague G. F. and Penny L. H. 1963. Mutations affecting quantitative characters in long-term inbred lines of maize. Crop Sci., 3: 175–178.Google Scholar
  148. Russell W. A., Eberhart S. A. and Vega U. A. 1973. Recurrent selection for specific combining ability for yield in two maize populations. Crop Sci., 13: 257–261.Google Scholar
  149. Saghai Maroof M. A., Yang G. P., Zhang Q. and Gravois K. A. 1997. Correlation between molecular marker distance and hybrid performance in US long grain rice. Crop Sci., 37: 145–150.Google Scholar
  150. Sant V. J., Patankar A. G., Sarode N. D., Mhase L. B., Sainani P. K., Deshmukh R. B., Ranjekar P. K., and Gupta V. S. 1999. Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor. Appl. Genet., 98: 1217–1225.Google Scholar
  151. Schmulling T., Rohrig H., Pilz S., Waiden R. and Schell J. 1993. Restoration of fertility by antisense RNA in genetically energineered male sterile tobacco plants. Mol. Gen. Genet., 237: 385–394.PubMedGoogle Scholar
  152. Schmulling T., Schell J. and Spena A. 1988. Single gene from Agrobacterium rhizogenes influence plant development. EMBO J., 7: 2621–2629.PubMedGoogle Scholar
  153. Shi M. S. 1981. Preliminary report of breeding and utilization of late japonica natural double purpose line. J. Hubei Agric. Sci., 7: 1–3.Google Scholar
  154. Shivanna K. R. and Sawhney V. K. 1997. Pollen Biotechnology for Crop Production and Improvement. Cambridge University Press, Cambridge, UK.Google Scholar
  155. Shoultz D. 1985. An evaluation of parent delay techniques. Corn Sorghum Res. Conf., 440: 151–160.Google Scholar
  156. Shull G. H. 1908. The composition of a field of maize. Am. Breeder’s Assoc. Rep., 4: 296–301.Google Scholar
  157. Shull G. H. 1909. A pure-line method of corn breeding. Am. Breeder’s Assoc. Rep., 5: 51–59.Google Scholar
  158. Shull G. H. 1952. Beginnings of the heterosis concept. p. 14–48. In: Heterosis. (ed. ) J. W. Gowen, Iowa State College Press, Ames, USA.Google Scholar
  159. Smith J. S. C. 1988. Diversity of United States hybrid maize germplasm. Isozymic and chromatographic evidence. Crop Sci., 28: 63–69.Google Scholar
  160. Smith J. S. C. and Smith O. S. 1989. The description and assessment of distances between inbred lines of maize. II. The utility of morphological, biochemical, and genetic descriptors and a scheme for the testing of distinctiveness between inbred lines. Maydica, 34: 151–161.Google Scholar
  161. Sprague G. F. 1946. Early testing of inbred lines. J. Amer. Soc. Agron., 38: 108–117.Google Scholar
  162. Sprague G. F. and Tatum L. A. 1942. General vs specific combining ability in single crosses of corn. J. Am. Soc. Agron., 34: 923–932.Google Scholar
  163. Sprague G. F. and Eberhart S. A. 1977. Corn breeding. p. 305–362. In: Corn and Corn Improvement. (ed. ) G. F. Sprague, Am. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  164. Sprague G. F., Russell W. A. and Penny L. H. 1960. Mutation affecting quantitative traits in the selfed progeny of doubled monoploid stocks. Genetics, 45: 855–866.PubMedGoogle Scholar
  165. Stephens J. C. and Holl and R. F. 1954. Cytoplasmic male sterility for hybrid sorghum seed production. Argon. J., 46: 320–323.Google Scholar
  166. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T. and Lander E. S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132: 823–839.PubMedGoogle Scholar
  167. Stuber C. W., Williams W. P. and Moll R. H. 1973. Epistasis in maize (Zea mays L. ), III. Significance in predictions of hybrid performance. Crop Sci., 13: 195–200.Google Scholar
  168. Subudhi P. K., Borkakati R. P., Virmani S. S. and Huang N. 1997. Molecular mapping of a thermosensitive genetic male sterlity gene in rice using bulked segregant analysis. Genome, 40: 188–194.PubMedGoogle Scholar
  169. Taillebois J. and Guimaraes E. P. 1988. Improving out crossing rate in rice [Oryza sativa L. ]. p. 175–180. In: Hybrid Rice. IRRI, Manila, Philippines.Google Scholar
  170. Tan Z. C., Li Y. Y., Chen L. B. and Zhou G. S. 1990. Studies on ecological and adaptability of dual purpose line An-Nong S-l. Hybrid Rice, 3: 35–38.Google Scholar
  171. Tatum L. A. 1971. The southern corn leaf blight epidemic. Science, 111: 1113–1116.Google Scholar
  172. Troyer A. F. 1996. Breeding widely adapted, popular maize hybrids. Euphytica, 92: 163–174.Google Scholar
  173. Van der Meer I. M., Stam M. E., Van Tunen A. J., Moll J. M. N, and Stuitje A. R. 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 4: 253–262.PubMedGoogle Scholar
  174. Virmani S. S. 1994. Heterosis and hybrid rice breeding. Monographs on Theoretical and Applied Genetics. Springer-Verlag.Google Scholar
  175. Virmani S. S. and Edwards I. 1983. Current status and future prospects of breeding hybrid rice and wheat. Adv. Agron., 36: 145–214.Google Scholar
  176. Virmani S. S. and Zaman F. U. 1998. Improving grain quality of hybrid rice: challenges, strategies and achievements. p. 177–186. In: Advances in Hybrid Rice Technology. (eds. ) S. S. Virmani, E. A. Siddiq and K. Murlidharan, Proc. 3rd Int. Symp. Hybrid Rice, Nov. 14-16, 1996, Hyderabad, India, IRRI, Los Banos, Philippines.Google Scholar
  177. Virmani S. S. and Ilyas-Ahmed M. 2001. Environment-sensitive genetic male sterility (EGMS) in crops. Adv. Agron., 72: 139–195.Google Scholar
  178. Walejko R. N. and Russeeil W. A. 1977. Evaluation of recurrent selection for specific combining ability in two open-pollinated maize cultivars. Crop Sci., 17: 647–651.Google Scholar
  179. Wang Z., Zheng F., Shen G., Gao J., Snusted D. P., Li M., Jihaung J. and Hong M. 1995. The amylose content in rice endosperm of the waxy gene. Plant J., 7: 613–622.PubMedGoogle Scholar
  180. Williams M. E., Leemans J. and Michiels F. 1997. Male sterlity through recombinant DNA technology, p. 237–258. In: Pollen Biotechnology for Crops Production and Improvement. (eds. ) K. R. Shivanna and V. K. Sawhney, Cambridge Univ. Press, Cambridge, UK.Google Scholar
  181. Worrall D., Hird D. L., Hodge R., Paul W., Draper J. and Scott R. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 4: 759–771.PubMedGoogle Scholar
  182. Wu J. L. 1986. Breeding haploid corn by anther culture. p. 149–161. In: Haploids of Higher Plants In vitro. (eds. ) H. Hu and H. Y. Yang, Springer, Berlin, Germany.Google Scholar
  183. Wych R. D. 1988. Production of hybrid seed corn. p. 565–607. In: Corn and Corn Improvement. (eds. ) G. F. Sprague and J. W. Dudley, Am. Soc. Agron., Maidson, USA.Google Scholar
  184. Xiao J., Li J., Yuan L., Mc Couch S. R. and Tanksley S. D. 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based marker. Theor. Appl. Genet., 92: 637–643.Google Scholar
  185. Xiao J., Grandillo S., Ahri S. N., Mc Couch S. R., Tanksley S. D., Li J. and Yuan L. P. 1996. Genes from wild rice improve yield. Nature, 384: 223–224.Google Scholar
  186. Yao F. Xu C. G., Yu S. B., Li X. J., Gao Y. J., Li X. H. and Jing O. et al. 1997. Mapping fertility-restoring genes of rice WA cytoplasmic male sterility using SSLP markers 171 Zhang. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L. ), Euphytica, 98: 183–187.Google Scholar
  187. Yuan L. P. 1977. The execution and theory of developing hybrid rice. (In Chinese. ) Zhonggue. Nongye Kexue (Chinese Agric. Sci.) 1: 27–31.Google Scholar
  188. Zambezi B. T., Horner E. S. and Martin F. G. 1986. Inbred lines as testers for general combining ability in maize. Crop Sci., 26: 908–910.Google Scholar
  189. Zhang G., Bharaj T. S., Lu Y., Virmani S. S. and Huang N. 1997. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor. Appl. Genet., 94: 27–33.PubMedGoogle Scholar
  190. Zhang Q. F., Shen B. S., Dai X. K., Mei M. H., Saghai Maroof M. A. and Li Z. B. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genetic male sterility in rice. Proc. Natl. Acad. Sci., USA. 91: 8675–8679.Google Scholar
  191. Zhang Q. F., Zhou Z. Q., Yang G. P., Xu C. G., Liu K. D. and Saghai Maroof M. A. 1996. Molecular marker heterozygosity and hybrid performance in indica and japonic a rice. Theor. Appl. Genet., 93: 1218–1224.Google Scholar
  192. Zhang Z. G., Yuan S. C., Zen H. L., Li Y. Z., Li Z. C. and Wei C. L. 1991. Preliminary observation of fertility changes in the new type temperature sensitive male-sterile rice. IV A. Hybrid Rice, 1: 31–34.Google Scholar
  193. Zuber M. S. and Darrah L. L. 1980. 1979 US corn germplasm base. Corn Sorghum Res. Conf., 35: 234–249.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • B. S. Dhillon
    • 1
  • A. K. Singh
    • 2
  • B. P. S. Lather
    • 3
  • G. Srinivasan
    • 4
  1. 1.National Bureau of Plant Genetic ResourcesNew DelhiIndia
  2. 2.Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.Ch. Charan Singh Haryana Agricultural UniversityHisarIndia
  4. 4.International Maize and Wheat Improvement Center (CIMMYT)El BatanMexico

Personalised recommendations