Skip to main content

Advances in Hybrid Breeding Methodology

  • Chapter
Plant Breeding

Abstract

Hybrid cultivars are the first generation (F1) progeny of a cross between two or more selected and genetically diverse parents, and these exploit heterosis. Heterosis is defined as increased vigour, size, fruitfulness, speed of development, resistance to disease and insect-pests or to climatic rigours of any kind in F1 generation. Dominance of linked loci, over dominance, and epistatic gene action were proposed to explain the genetic basis of heterosis. Logically all types of gene action controlling the inheritance of a trait should be expected to contribute to heterosis. Hybrid breeding started in maize, and experiences in this crop have greatly contributed to the development of hybrid breeding methodology which is continuously evolving and expanding. In sorghum, pearl millet, sunflower etc., hybrid breeding started with the development of male sterility and fertility restoration system for pollination control. The technology was largely confined to cross-pollinated crops with a few exceptions like tomato and cotton. In the late 1970s, the success of hybrid rice, a strictly self-pollinated crop in China provided an impetus to hybrid breeding. The possibility to use environment-sensitive genetic male sterility and chemical hybridizing agents has opened the avenue of widening the base of parental germplasm and enhancing the magnitude of heterosis; and it is likely to simplify hybrid breeding and seed production. Further, the use of recurrent selection to develop hybrid breeding oriented source germplasm needs greater emphasis. The application of biotechnological techniques such as doubled haploidy, somatic hybridization, analysis of molecular diversity and marker assisted selection are expected to provide cutting edge to hybrid breeding; for which biotechnology needs to be integrated with hybrid breeding. Another exciting area is the development of apomictic hybrid that should greatly expand the coverage by hybrid cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali J., Devakumar C., Zaman F. U. and Sadananda A. R. 1990. Relative gametocidal potency of oxanilates and arsenates in rice. p. 18–19. In: Extended Summary, Proc. Intern. Symp. on Rice Research: New Frontiers, Dte. of Rice Research, Hyderabad, India.

    Google Scholar 

  • Allard R. W. and Bradshaw A. D. 1964. Implications of genotype-environment interactions in applied plant breeding. Crop Sci., 4: 503–508.

    Google Scholar 

  • Allison J. C. S. and Curnow R. N. 1966. On the choice of tester parent for the breeding of synthetic varieties of maize (Zea mays L. ). Crop Sci., 6: 541–544.

    Google Scholar 

  • Aman M. A. and Sarkar K. R. 1978. Selection for haploidy inducing potential in maize. Indian J. Genet., 38: 452–457.

    Google Scholar 

  • Anonynmous. 1971. Certification Handbook. Publ. 23. Rv. 1984. Assoc. Off. Seed. Cert. Agencies. Raleigh, USA.

    Google Scholar 

  • Asker S. E. and Jerling L. 1992. Apomixis in Plants. 298. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bailey T. B. Jr. 1977. Selection limits in self-fertilizing population following the cross of homozygous lines. p. 399–412. In: Proc. Int. Conf. Nat. Genet. (eds. ) E. Pollak, O. Kempthorne, and T. B. Bailey Jr., Iowa State Univeristy Press, Ames, USA.

    Google Scholar 

  • Bailey T. B. Jr. and Comstock R. E. 1976. Linkage and synthesis of better genotypes in self-fertilizing species. Crop Sci., 16: 363–370.

    Google Scholar 

  • Balko L. G. and Russell W. A. 1980. Effects of rate of nitrogen fertilizer on maize inbred lines and hybrid progeny. II. Correlations among agronomic traits. Maydica, 25: 81–94.

    Google Scholar 

  • Bauer P. J. and Green C. C. 1996. Evaluation of F2 genotypes of cotton for conservation tillage. Crop Sci., 36: 655–658.

    Google Scholar 

  • Bansal U. K., Dhillon B. S. and Saxena V. K. 1993. Manipulation of flowering date in maize. p. 88–89. In: Heterosis Breeding in Crop Plants-Theory and Application, (eds. ) M. M. Verma, D. S. Virk and G. S. Chahal. Crop Improv. Soc. of India, Ludhiana.

    Google Scholar 

  • Barclay I. R. 1975. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature, 256: 410–411.

    Google Scholar 

  • Bashaw E. C. and Hussey M. A. 1992. Apomixis in Cenchrus. p 1–4. Proc. Apomixis Workshop, Atlanta, G. A. 11-12 Feb. 1992. Nat. Technical Inform. Serv. Springfield, V. A.

    Google Scholar 

  • Bauman L. F. 1967. Seed coating to delay emergence. Hyh. Corn Ind. Res. Conf., 22: 49–52.

    Google Scholar 

  • Bauman L. F. 1981. Review of methods used by breeders to develop superior corn inbreds. Corn Sorghum Res. Conf., 36: 199–208.

    Google Scholar 

  • Beal J. F. 1878. Report of the professor of botany and horticulture. p. 445–457. Report of Michigan State Board of Agric., Lousing, USA.

    Google Scholar 

  • Beckett J. B. 1971. Classification of male sterile cytoplasm in maize (Zea mays L. ). Crop Sci., 11: 724–727.

    Google Scholar 

  • Bernardo R. 1992. Retention of genetically superior inbred lines during early generation test crossing in maize. Crop Sci., 32: 923–927.

    Google Scholar 

  • Bernardo R. 1994. Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci., 34: 20–25.

    Google Scholar 

  • Bernardo R. 1996. Best linear unbiased prediction of maize single-cross performance. Crop Sci., 36: 50–56.

    Google Scholar 

  • Bernardo R. 1999. Best linear unbiased predictor analysis, p. 269–276. In: Genetics and Exploitation of Heterosis in Crops. (eds. ) J. G. Coors and S. Pandey. Am. Soc. Agron., Madison, Wisconsin, USA.

    Google Scholar 

  • Bogenschutz T. G. and Russell W. A. 1986. An evaluation for genetic variation within inbred lines maintained by sib-mating and self-pollination. Euphytica, 35: 403–412.

    Google Scholar 

  • Boppenmair J., Melchinger A. E., Brunklaus-Jung E., Geiger H. H. and Herrmann R. G. 1992. Genetic diversity for RFLPs in European maize inbreds: I. Relation to performance of Flint × Dent crosses for forage traits. Crop Sci., 32: 895–902.

    Google Scholar 

  • Briggle L. W. 1963. Heterosis in wheat — a review. Crop Sci., 3: 407–412.

    Google Scholar 

  • Brim C. A. 1966. A modified pedigree method in soybean. Crop Sci., 6: 220.

    Google Scholar 

  • Brim C. A. and Stuber C. W. 1973. Application of genetic male sterility to recurrent selection schemes in Soybean. Crop Sci., 13: 528–530.

    Google Scholar 

  • Chang-Jian J., Cockerham C. C. and Moll R. H. 1990. Inter and intra-cultivar effects of selection on heterosis. Crop Sci., 30: 44–49.

    Google Scholar 

  • Chase S. S. 1952. Production of homozygous diploids of maize from monoploids. Agron. J., 44: 263–267.

    Google Scholar 

  • Cloninger F. D., Zuber M. S. and Horrocks R. D. 1974. Synchronization of flowering of corn (Zea mays L. ) by clipping young plants. Agron. J., 66: 270–272.

    Google Scholar 

  • Cockerham C. C. 1961. Implications of genetic variance in hybrid breeding programme. Crop Sci., 1: 47–52.

    Google Scholar 

  • Cockerham C. C. 1967. Prediction of double crosses from single crosses. Zuechter, 37: 160–169.

    Google Scholar 

  • Comstock R. E. 1979. Inbred line vs the population as tester in reciprocal recurrent selection. Crop Sci., 19: 881–886.

    Google Scholar 

  • Comstock R. E., Robinson H. F. and Harvey P. H. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J., 41: 360–367.

    Google Scholar 

  • Cowan R. J. 1972. Seed certification. p. 371–397. In: Seed Biology. (ed. ) T. T. Kozlowski. Academic Press, New York, USA.

    Google Scholar 

  • Cramer M. M. and Kannenberg L. W. 1992. Five years of HOPE: the hierarchical open-ended corn breeding system. Crop Sci., 32: 1163–1171.

    Google Scholar 

  • Darrah L. L. and Zuber M. S. 1986. 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci., 26: 1109–1113.

    Google Scholar 

  • Davis D. D. 1998. Cotton, p. 357–380. In: Hybrid Cultivar Development, (eds. ) S. S. Banga and S. K. Banga, Narosa Publishing House, New Delhi.

    Google Scholar 

  • Davis R. L. 1927. Report of the plant breeder. Rep. Puerto Rice Agric. Exp. Stn., Puerto Rico, pp. 14–15.

    Google Scholar 

  • Dhillon B. S. 1975. The application of partial-diallel crosses in plant breeding — a review. Crop Improv., 2: 1–8.

    Google Scholar 

  • Dhillon B. S. 1998a. Recurrent selection for combining ability and performance per se of cross-bred and selfed families. Maydica, 43: 155–160.

    Google Scholar 

  • Dhillon B. S. 1998b. Quantitative-genetic implications of the use of cytoplasmic-genic male sterility in relation to the types of hybrids in crop plants. Crop Improv., 25: 1–5.

    Google Scholar 

  • Dhillon B. S. 1991a. Recurrent mass selection based on selfed-plant evaluation in allogamous species. Crop Sci., 31: 1075–1077.

    Google Scholar 

  • Dhillon B. S. 1991b. Alternate recurrent selection of S1 and half-sib families for intrapopulation improvement. Maydica, 36: 45–48.

    Google Scholar 

  • Dhillon B. S. and Khehra A. S. 1989. Modified S1 recurrent selection in maize improvement. Crop Sci., 29: 226–228.

    Google Scholar 

  • Dhillon B. S. and Prasanna B. M. 2001. Maize. pp. 147–185. In: Breeding Field Crops, (ed. ) V. L. Chopra, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

    Google Scholar 

  • Dhillon B. S., Boppermaier J., Pollmer W. G., Herrmann R. G. and Melchinger A. E. 1993. Relationship of restriction fragment length polymorphism among European maize inbreds with ear dry matter yield of their hybrids. Maydica, 38: 245–248.

    Google Scholar 

  • Dhillon B. S., Malhi N. S. and Saxena V. K. 1997. Development and improvement of heterotic pools in maize. p. 74–75. In: Proc. Intl. Symp. on Genetics and Exploitation of Heterosis in Crops, CIMMYT, Mexico.

    Google Scholar 

  • Dhillon B. S., Malhi N. S., Saxena V. K., Kapoor W. R., Pal S. S., Singh M. and Khehra A. S. 1995. Paras — first single cross hybrid of maize in India. J. Res. Punjab Agric. Univ., 32: 238–239.

    Google Scholar 

  • Dubreuil P., Dufour P., Krejci E., Causse M., Vienne D., Gallais A. and Charcosset A. 1996. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci., 36: 790–799.

    Google Scholar 

  • Dudley J. W. 1982. Theory of transfer of alleles. Crop Sci., 22: 631–637.

    Google Scholar 

  • Dudley J. W. 1984. Identifying parents for use in a pedigree breeding programme. Corn Sorghum Res. Conf., 39: 176–188.

    Google Scholar 

  • Dudley J. W. 1987. Modification of methods for identifying inbred lines useful for improving parents of elite line crosses. Crop Sci., 27: 944–947.

    Google Scholar 

  • Dudley J. W., Saghai Maroof M. A. and Ruefner G. K. 1991. Molecular markers and grouping of parents in maize breeding programs. Crop Sc., 31: 718–728.

    Google Scholar 

  • Duvick D. N. 1999. Heterosis: feeding people and protecting natural resources, p. 19–29. In: Genetics and Exploitation of Hectorsis in Crops, (eds. ) J. G. Coors and S. Pandey, Am. Soc. Agron., Madison, Wisconsin, USA.

    Google Scholar 

  • Duvick D. N. 1965. Cytoplasmic pollen sterility in corn. Adv. Genet., 13: 1–56.

    Google Scholar 

  • Duvick D. N. 1966. Influence of morphology and sterility on breeding methodology, p. 85–138. In: Plant Breeding, (ed. ) K. J. Frey, Iowa state university press, Ames, IA. Vol. I.

    Google Scholar 

  • Duvick D. N. 1974. Continuous backcrossing to transfer prolificacy to a single inbred line of maize. Crop Sci., 14: 69–71.

    Google Scholar 

  • Duvick D. N. 1977. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 22: 187–196.

    Google Scholar 

  • Eberhart S. A. 1964. Theoretical relations among single, three-way and double-cross hybrids. Biometrics, 20: 522–539.

    Google Scholar 

  • Eberhart S. A. 1970. Factors affecting efficiencies of breeding methods. Afr. Soils, 15: 669–680.

    Google Scholar 

  • Eberhart S. A., Russell W. A. and Penny L. H. 1964. Double-cross hybrid prediction when epistasis is present. Crop Sci., 4: 363–366.

    Google Scholar 

  • Eyherabide G. H. and Hallauer A. R. 1991. Reciprocal full-sib recurrent selection in maize. I. Direct and indirect responses. Crop Sci., 31: 952–959.

    Google Scholar 

  • Falconer D. S. 1988. Introduction of Quantitative Genetics. Longman, London, UK.

    Google Scholar 

  • Fowler W. 1967. Cultural practices for today’s seed fields. Hybrid Corn Ind. Res. Conf., 22: 53–58.

    Google Scholar 

  • Gama E. E. C. and Hallauer A. R. 1977. Relation between inbred and hybrid traits in maize. Crop Sci., 17: 703–706.

    Google Scholar 

  • Gardner C. O. 1961. An evaluation of effects of mass selection and seed iradiation with thermal neutrons on yield of corn. Crop Sci., 18: 387–390.

    Google Scholar 

  • Geadelman J. L. and Peterson R. H. 1978. Effects of two yield component selection procedures on maize. Crop Sci., 18: 387–390.

    Google Scholar 

  • Gerloff J. W. and Smith O. S. 1988. Choice of method for identifying germplasm with superior alleles. I. Theoretical results. Theor. Appl. Genet., 76: 209–216.

    Google Scholar 

  • Godshalk E. B., Lee M. and Lamkey K. R. 1990. Relationship of restriction fragment length polymorphism to single cross hybrid performance in maize. Theor. Appl. Genet., 80: 273–280.

    CAS  Google Scholar 

  • Goodsell S. 1961. Male sterility in corn by androgenesis. Crop Sci., 1: 227–228.

    Google Scholar 

  • Green J. M. 1948. Relative value of two testers for estimating topcross performance in segregating maize populations. J. Am. Soc. Agron., 40: 45–57.

    Google Scholar 

  • Griffing B. 1956. Detasseling responses in corn. Agron. J., 48: 247–249.

    Google Scholar 

  • Hadjinov M. I., Sherbak V. S., Benko N. I., Gusev V. P., Sukhorzheus-Kaya T. B. and Voronova L. P. 1982. Interrelationships between isozyome diversity and combining ability in maize lines. Maydica, 27: 135–139.

    Google Scholar 

  • Hallauer A. R. 1973. Hybrid development and population improvement in reciprocal full-sib selection. Egyptian J. Genet. Cytol., 1: 84–101.

    Google Scholar 

  • Hallauer A. R. 1975. Relation of gene action and types of testers in maize breeding procedures. Corn Sorghum Res. Conf., 30: 150–165.

    Google Scholar 

  • Hallauer A. R. 1990. Methods used in developing maize inbreds. Maydica, 35: 1–16.

    Google Scholar 

  • Hallauer A. R. 1992. Recurrent selection in maize. Plant Breed. Rev., 9: 115–179.

    Google Scholar 

  • Hallauer A. R. and Lopez-Perez E. 1979. Comparisons among testers for evaluating lines of corn. Corn Sorghum Res. Conf., 34: 57–75.

    Google Scholar 

  • Hallauer A. R. and Miranda J. B. 1988. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Hallauer A. R. and Eberhart S. A. 1970. Reciprocal full-sib selection. Crop Sci., 10: 315–316.

    Google Scholar 

  • Hallauer A. R., Russell W. A. and Lamkey K. R. 1988. Corn breeding, p. 463–564. In: Corn and Corn Improvement. (eds. ) G. F. Sprague and J. W. Dudley, Am. Soc. Agron., Madison, Wisconsin, USA.

    Google Scholar 

  • Hanna W. P., Ozias-Akins and Roche D. 1999. Apomixis and heterosis, p. 335–342. In: Genetics and Exploitation of Heterosis in Crops. (eds. ) J. G. Coors and S. Pandey. Am. Soc. Agron., Madison, Wisconsin, USA.

    Google Scholar 

  • Hanna W. P., Roche D. and Ozias-Akins P. 1996. Use of apomixis in crop improvement-traditional and molecular approaches. In: Proc. Third International Symp. on Hybrid Rice, Hyderabad, India, 14-16 Nov. 1996.

    Google Scholar 

  • Harlan H. V. and Pope M. N. 1922. The use and value of backcrosses in small grain breeding. J. Hered., 13: 319–322.

    Google Scholar 

  • Hayes H. K. 1963. A Professor’s Story of Hybrid Corn, Burgess, Minneapolis, USA.

    Google Scholar 

  • Heidrich-Sobrinho E. and Corderio A. R. 1975. Codominant isoenzymic alleles as markers of genetic diversity correlated with heterosis in maize (Zea mays L. ). Theor. Appl. Genet., 46: 197–199.

    CAS  Google Scholar 

  • Henderson C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31: 423–447.

    PubMed  CAS  Google Scholar 

  • Ho Y. T. and Comstock R. E. 1980. Combining superior alleles from two homozygous populations in a cross-fertilizing species. Genet. Res., 36: 277–287.

    Google Scholar 

  • Horner E. S., Lundy H. W., Lutrick M. C. and Chapman W. H. 1973. Comparison of three methods of recurrent selection in maize. Crop Sci., 13: 485–489.

    Google Scholar 

  • Horner E. S., Lutrick M. C, Chapman W. H. and Martin F. G. 1976. Effect of recurrent selection for combining ability with a single cross tester in maize. Crop Sci., 16: 5–8.

    Google Scholar 

  • Hull F. H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron., 37: 134–45.

    Google Scholar 

  • Humberto Reyes-Valdes M. 2000. A model for marker-based selection in gene introgression breeding programs. Crop Sci., 40: 91–98.

    Google Scholar 

  • Hunter R. B. and Kannenberg L. W. 1971. Isozyme characterization of corn (Zea mays L. ) inbreds and its relationship to single cross hybrid performance. Can. J. Genet. Cytol., 13: 649–655.

    Google Scholar 

  • Ichikawa N., Kishimoto N., Inagaki A., Nakamura A., Koshino Y., Yokozeki Y., Oka M., Samoto S., Akagi H., Higo K., Shiniyo C., Fujimura J. and Shimada H. 1997. A rapid PCR-aided selection of rice line containing the Rf-1 gene which is involved in restoration of cytoplasmic male sterility. Mol. Breeding, 3: 195–202.

    CAS  Google Scholar 

  • Ikehashi H. and Araki H. 1984. Varietal screening for compatibility type revealed in F1 fertility of crosses in rice. Jpn. J. Breed, 34: 304–312.

    Google Scholar 

  • Jain A., Bhatia S., Banga S. S., Prakash S. and Lakshmikumaran M. 1994. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian Mustard (Brassica juncea) and its relationship to heterosis. Theor. Appl. Genet., 88: 116–122.

    CAS  Google Scholar 

  • Jain S. K. and Suneson C. A. 1963. Male sterility for increased outbreeding in populations of barley. Nature, 199: 407–408.

    Google Scholar 

  • Jenkins M. T. 1934. Methods of estimating the performance of double crosses in corn. J. Am. Soc. Agron., 26: 199–204.

    Google Scholar 

  • Jenkins M. T. 1935. The effect of inbreeding and of selection within inbred lines of maize upon hybrids made after successive generations of selfing. Iowa State J. Sci., 9: 429–450.

    Google Scholar 

  • Jenkins M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Soc. Agron., 32: 55–63.

    Google Scholar 

  • Jenkins M. T. and Brunson A. M. 1932. Methods of testing inbred lines of maize in crossbred combination. J. Am. Soc. Agron., 24: 523–530.

    Google Scholar 

  • Johnson G. R. 1980. Simple quantitative theory for selections during inbred line development. III. Corn Breeder’s School, 16: 1–18.

    Google Scholar 

  • Jones D. F. 1918. The effects of inbreeding and crossbreeding upon development. Conn Agric. Exp. Stn. Bull, 207: 5–100.

    Google Scholar 

  • Jones H. A. and Clarke A. E. 1943. Inheritence of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci., 43: 189–194.

    Google Scholar 

  • Jones J. W. 1926. Hybrid vigour in rice. J. Am. Soc. Agron., 18: 424–428.

    Google Scholar 

  • Jones M. D. and Brooks J. S. 1952. Effect of tree barriers on outcrossing in corn. Oklahoma Agric. Exp. Stn. Tech. Bull., T-45: 3–11.

    Google Scholar 

  • Kahler A. L., Hallauer A. R. and Gardner C. O. 1986. Allozyme polymorphisms within and among open-pollinated and adapted exotic populations of maize. Theor. Appl. Genet., 72: 592–601.

    CAS  Google Scholar 

  • Kao K. N. and Kasha K. J. 1969. Haploidy from interspecific crosses with tetraploid barley, p. 82–88. In: Barley Genetics. (ed. ) R. A. Nilan, Washington State Univ. Press, Washington.

    Google Scholar 

  • Kaul M. L. H. 1998. Male sterility: classification and concept, p. 17–45. In: Hybrid Cultivar Development. (eds. ) S. S. Banga and S. K. Banga, Narosa Publishing House, New Delhi.

    Google Scholar 

  • Kempthorne O. and Curnow R. N. 1961. The partial diallel cross. Biometrics, 17: 229–250.

    Google Scholar 

  • Kermicle J. L. 1969. Androgenesis conditioned by a mutation in maize. Science, 166: 1422–1424.

    PubMed  CAS  Google Scholar 

  • Kim C. H. and Rutger J. N. 1988. Heterosis in rice. p. 39–54. In Hybrid Rice. IRRI, Manila, Philippines.

    Google Scholar 

  • Kirti P. B., Banga S. S., Prakash S. and Chopra V. L. 1995a. Transfer of ogu cytoplasmic male sterility to Brassica juncea and improvement of male sterility line through somatic cell fusion. Theor. Appl. Genet., 91: 517–521.

    CAS  Google Scholar 

  • Kirti P. B., Mohapatra T., Khanna H. and Prakash S. 1995b. Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep., 14: 593–597.

    CAS  Google Scholar 

  • Lamkey K. R., Schnicker B. J. and Melchinger A. E. 1995. Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci., 35: 1272–1281.

    Google Scholar 

  • Landi P and Frascaroli E. 1995. Response to a modified reciprocal recurrent selection in two maize synthetics. Crop Sci., 35: 791–797.

    Google Scholar 

  • Laurie D. A. and Bennett M. D. 1988. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet., 76: 393–397.

    Google Scholar 

  • Lee M., Godshalk E. B., Lamkey K. R. and Woodman W. W. 1989. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci., 29: 1067–1071.

    Google Scholar 

  • Liu K., Wang J., Li H., Xu C., Liu A., Li X. and Zhang Q. 1997. A genome-wide analysis of wide compatibility in rice and the precise location of S5 locus in the molecular map. Theor. Appl. Genet., 95: 809–814.

    CAS  Google Scholar 

  • Mariani C., Beukeber M. D., Truettever J., Leemans J. and Goldberg R. B. 1990. Induction of male sterility in plants by a chimeric ribonuclease gene. Nature, 347: 737–741.

    CAS  Google Scholar 

  • Mariani C., Gossele V., De Beuckeber M., De Block M., Goldberg R. B., De Greef W. and Leemans J. 1992. A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature (London), 356: 385–387.

    Google Scholar 

  • Martin J. M., Talbert L. E., Lanning S. P. and Blake N. K. 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci., 35: 104–108.

    Google Scholar 

  • Maruyama K., Araki H. and Kato H. 1991. Thermosensitive genetic male sterility induced by irradiation. In: Rice Genetics II. IRRI, Manila, Philippines, p. 227–235.

    Google Scholar 

  • Melchinger A. E. 1987. Expectation of means and variances of testcrosses produced from F2 and backcross individuals and their selfed progenies. Heredity, 59: 105–115.

    Google Scholar 

  • Melchinger A. E., Boppenmaier J., Dhillon B. S., Pollmer W. G. and Herrmann R. G. 1992. Genetic diversity for RFLPs in European maize inbreds. II. Relation to the performance of hybrids within versus between heterotic groups for forage trait. Theor. Appl. Genet., 84: 672–681.

    Google Scholar 

  • Melchinger A. E., Lee M., Lamkey K. R., Hailauer A. R. and Woodman W. L. 1990. Genetic diversity for restriction fragment length polymorphism and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genetics, 80: 488–496.

    Google Scholar 

  • Melchinger A. E., Schmidt W. and Geiger H. H. 1988. Comparison of testcrosses produced from F2 and first-backcross populations in maize. Crop Sci., 28: 743–749.

    Google Scholar 

  • Mishra G. P., Singh R. K., Mohapatra T., Singh A. K., Prabhu K. V. and Zaman F. U. 2001. Molecular mapping of a fertility restorer gene in Basmati rice using microsatellite markers. Indian J. Genet., 61: 348–349.

    CAS  Google Scholar 

  • Moll R. H. and Hasnon W. D. 1984. Comparisons of effects of intrapopulation vs. interpopulation selection in maize. Crop Sci., 24: 1047–1052.

    Google Scholar 

  • Moll R. H., Jackson W. A. and Mikkelson R. L. 1994. Recurrent selection for maize grain yield: Dry matter and nitrogen accumulation and partitioning changes. Crop Sci., 34: 874–881.

    Google Scholar 

  • Moll R. H., Lonnquist J. H., Fortuna J. V. and Johnson E. C. 1965. The relation of heterosis and genetic divergence in maize. Genetics, 52: 139–144.

    PubMed  CAS  Google Scholar 

  • Moll R. H., Salhuana W. S. and Robinson H. F. 1962. Heterosis and genetic diversity in variety crosses in maize. Crop Sci., 2: 197–198.

    Google Scholar 

  • Otsuka Y., Eberhart S. A. and Russell W. A. 1972. Comparison of prediction formulae for maize hybrids. Crop Sci., 12: 325–331.

    Google Scholar 

  • Parmar K. S., Siddiq E. A. and Swaminathan M. S. 1979. Chemical induction of male sterility in rice. Indian J. Genet., 39: 529–541.

    CAS  Google Scholar 

  • Perez A. T., Chang T. T., Beachell H. M., Vergara B. S. and Marciano A. P. 1973. Induction of male sterility in rice with ethrel and RH-531. SABRAO News Lett., 5: 133–139.

    Google Scholar 

  • Popi J., Rajnpreht J., Kannenberg L. W. and Pauls K. P. 2000. Random amplified polymorphic DNA-based evaluation of diversity in the hierarchical, open-ended population enrichment maize breeding system. Crop Sci., 40: 619–625.

    Google Scholar 

  • Rademacher M. A. M., Hailauer A. R. and Russell W. A. 1999. Comparative response of two reciprocal recurrent selection methods in BS21 and BS22 maize population. Crop Sci., 39: 87–97.

    Google Scholar 

  • Rawlings J. C. and Thompson D. L. 1962. Performance level as criterion for the choice of maize testers. Crop Sci., 2: 217–220.

    Google Scholar 

  • Rhodes M. M. 1931. Cytoplasmic inheritance of male sterility in Zea mays. Science, 73: 340–341.

    Google Scholar 

  • Richey F. D. 1922. The experimental basis for the present status of corn breeding. J. Am. Soc. Agron., 14: 1–17.

    Google Scholar 

  • Richey F. D. 1927. The covergent improvement of selfed lines of corn. Am. Nat., 61: 430–449.

    Google Scholar 

  • Rinke E. H. and Sentz J. C. 1961. Moving Corn-Belt germplasm northward. Hybrid Corn Ind. Conf., 16: 53–56.

    Google Scholar 

  • Russell W. A. 1985. Comparison of hybrid performance of maize inbred lines developed from the original and improved cycles of BSSS. Maydica, 30: 407–419.

    Google Scholar 

  • Russell W. A. 1986. Contributions of breeding to maize improvement in the United States, 1920s–1980s. Iowa States J. Res., 61: 5–34.

    Google Scholar 

  • Russell W. A. and Eberhart S. A. 1975. Hybrid performance of selected maize lines from reciprocal recurrent selection and testcross selection programmes. Crop Sci., 15: 1–4.

    Google Scholar 

  • Russell W. A., Blackburn D. J. and Lamkey K. R. 1992. Evaluation of a modified reciprocal recurrent selection procedure for maize improvement. Maydica, 37: 61–67.

    Google Scholar 

  • Russell W. A., Sprague G. F. and Penny L. H. 1963. Mutations affecting quantitative characters in long-term inbred lines of maize. Crop Sci., 3: 175–178.

    Google Scholar 

  • Russell W. A., Eberhart S. A. and Vega U. A. 1973. Recurrent selection for specific combining ability for yield in two maize populations. Crop Sci., 13: 257–261.

    Google Scholar 

  • Saghai Maroof M. A., Yang G. P., Zhang Q. and Gravois K. A. 1997. Correlation between molecular marker distance and hybrid performance in US long grain rice. Crop Sci., 37: 145–150.

    Google Scholar 

  • Sant V. J., Patankar A. G., Sarode N. D., Mhase L. B., Sainani P. K., Deshmukh R. B., Ranjekar P. K., and Gupta V. S. 1999. Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor. Appl. Genet., 98: 1217–1225.

    CAS  Google Scholar 

  • Schmulling T., Rohrig H., Pilz S., Waiden R. and Schell J. 1993. Restoration of fertility by antisense RNA in genetically energineered male sterile tobacco plants. Mol. Gen. Genet., 237: 385–394.

    PubMed  CAS  Google Scholar 

  • Schmulling T., Schell J. and Spena A. 1988. Single gene from Agrobacterium rhizogenes influence plant development. EMBO J., 7: 2621–2629.

    PubMed  CAS  Google Scholar 

  • Shi M. S. 1981. Preliminary report of breeding and utilization of late japonica natural double purpose line. J. Hubei Agric. Sci., 7: 1–3.

    Google Scholar 

  • Shivanna K. R. and Sawhney V. K. 1997. Pollen Biotechnology for Crop Production and Improvement. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Shoultz D. 1985. An evaluation of parent delay techniques. Corn Sorghum Res. Conf., 440: 151–160.

    Google Scholar 

  • Shull G. H. 1908. The composition of a field of maize. Am. Breeder’s Assoc. Rep., 4: 296–301.

    Google Scholar 

  • Shull G. H. 1909. A pure-line method of corn breeding. Am. Breeder’s Assoc. Rep., 5: 51–59.

    Google Scholar 

  • Shull G. H. 1952. Beginnings of the heterosis concept. p. 14–48. In: Heterosis. (ed. ) J. W. Gowen, Iowa State College Press, Ames, USA.

    Google Scholar 

  • Smith J. S. C. 1988. Diversity of United States hybrid maize germplasm. Isozymic and chromatographic evidence. Crop Sci., 28: 63–69.

    Google Scholar 

  • Smith J. S. C. and Smith O. S. 1989. The description and assessment of distances between inbred lines of maize. II. The utility of morphological, biochemical, and genetic descriptors and a scheme for the testing of distinctiveness between inbred lines. Maydica, 34: 151–161.

    Google Scholar 

  • Sprague G. F. 1946. Early testing of inbred lines. J. Amer. Soc. Agron., 38: 108–117.

    Google Scholar 

  • Sprague G. F. and Tatum L. A. 1942. General vs specific combining ability in single crosses of corn. J. Am. Soc. Agron., 34: 923–932.

    Google Scholar 

  • Sprague G. F. and Eberhart S. A. 1977. Corn breeding. p. 305–362. In: Corn and Corn Improvement. (ed. ) G. F. Sprague, Am. Soc. Agron., Madison, Wisconsin, USA.

    Google Scholar 

  • Sprague G. F., Russell W. A. and Penny L. H. 1960. Mutation affecting quantitative traits in the selfed progeny of doubled monoploid stocks. Genetics, 45: 855–866.

    PubMed  CAS  Google Scholar 

  • Stephens J. C. and Holl and R. F. 1954. Cytoplasmic male sterility for hybrid sorghum seed production. Argon. J., 46: 320–323.

    Google Scholar 

  • Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T. and Lander E. S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132: 823–839.

    PubMed  CAS  Google Scholar 

  • Stuber C. W., Williams W. P. and Moll R. H. 1973. Epistasis in maize (Zea mays L. ), III. Significance in predictions of hybrid performance. Crop Sci., 13: 195–200.

    Google Scholar 

  • Subudhi P. K., Borkakati R. P., Virmani S. S. and Huang N. 1997. Molecular mapping of a thermosensitive genetic male sterlity gene in rice using bulked segregant analysis. Genome, 40: 188–194.

    PubMed  CAS  Google Scholar 

  • Taillebois J. and Guimaraes E. P. 1988. Improving out crossing rate in rice [Oryza sativa L. ]. p. 175–180. In: Hybrid Rice. IRRI, Manila, Philippines.

    Google Scholar 

  • Tan Z. C., Li Y. Y., Chen L. B. and Zhou G. S. 1990. Studies on ecological and adaptability of dual purpose line An-Nong S-l. Hybrid Rice, 3: 35–38.

    Google Scholar 

  • Tatum L. A. 1971. The southern corn leaf blight epidemic. Science, 111: 1113–1116.

    Google Scholar 

  • Troyer A. F. 1996. Breeding widely adapted, popular maize hybrids. Euphytica, 92: 163–174.

    Google Scholar 

  • Van der Meer I. M., Stam M. E., Van Tunen A. J., Moll J. M. N, and Stuitje A. R. 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 4: 253–262.

    PubMed  Google Scholar 

  • Virmani S. S. 1994. Heterosis and hybrid rice breeding. Monographs on Theoretical and Applied Genetics. Springer-Verlag.

    Google Scholar 

  • Virmani S. S. and Edwards I. 1983. Current status and future prospects of breeding hybrid rice and wheat. Adv. Agron., 36: 145–214.

    Google Scholar 

  • Virmani S. S. and Zaman F. U. 1998. Improving grain quality of hybrid rice: challenges, strategies and achievements. p. 177–186. In: Advances in Hybrid Rice Technology. (eds. ) S. S. Virmani, E. A. Siddiq and K. Murlidharan, Proc. 3rd Int. Symp. Hybrid Rice, Nov. 14-16, 1996, Hyderabad, India, IRRI, Los Banos, Philippines.

    Google Scholar 

  • Virmani S. S. and Ilyas-Ahmed M. 2001. Environment-sensitive genetic male sterility (EGMS) in crops. Adv. Agron., 72: 139–195.

    CAS  Google Scholar 

  • Walejko R. N. and Russeeil W. A. 1977. Evaluation of recurrent selection for specific combining ability in two open-pollinated maize cultivars. Crop Sci., 17: 647–651.

    Google Scholar 

  • Wang Z., Zheng F., Shen G., Gao J., Snusted D. P., Li M., Jihaung J. and Hong M. 1995. The amylose content in rice endosperm of the waxy gene. Plant J., 7: 613–622.

    PubMed  CAS  Google Scholar 

  • Williams M. E., Leemans J. and Michiels F. 1997. Male sterlity through recombinant DNA technology, p. 237–258. In: Pollen Biotechnology for Crops Production and Improvement. (eds. ) K. R. Shivanna and V. K. Sawhney, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Worrall D., Hird D. L., Hodge R., Paul W., Draper J. and Scott R. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 4: 759–771.

    PubMed  CAS  Google Scholar 

  • Wu J. L. 1986. Breeding haploid corn by anther culture. p. 149–161. In: Haploids of Higher Plants In vitro. (eds. ) H. Hu and H. Y. Yang, Springer, Berlin, Germany.

    Google Scholar 

  • Wych R. D. 1988. Production of hybrid seed corn. p. 565–607. In: Corn and Corn Improvement. (eds. ) G. F. Sprague and J. W. Dudley, Am. Soc. Agron., Maidson, USA.

    Google Scholar 

  • Xiao J., Li J., Yuan L., Mc Couch S. R. and Tanksley S. D. 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based marker. Theor. Appl. Genet., 92: 637–643.

    CAS  Google Scholar 

  • Xiao J., Grandillo S., Ahri S. N., Mc Couch S. R., Tanksley S. D., Li J. and Yuan L. P. 1996. Genes from wild rice improve yield. Nature, 384: 223–224.

    CAS  Google Scholar 

  • Yao F. Xu C. G., Yu S. B., Li X. J., Gao Y. J., Li X. H. and Jing O. et al. 1997. Mapping fertility-restoring genes of rice WA cytoplasmic male sterility using SSLP markers 171 Zhang. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L. ), Euphytica, 98: 183–187.

    CAS  Google Scholar 

  • Yuan L. P. 1977. The execution and theory of developing hybrid rice. (In Chinese. ) Zhonggue. Nongye Kexue (Chinese Agric. Sci.) 1: 27–31.

    Google Scholar 

  • Zambezi B. T., Horner E. S. and Martin F. G. 1986. Inbred lines as testers for general combining ability in maize. Crop Sci., 26: 908–910.

    Google Scholar 

  • Zhang G., Bharaj T. S., Lu Y., Virmani S. S. and Huang N. 1997. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor. Appl. Genet., 94: 27–33.

    PubMed  CAS  Google Scholar 

  • Zhang Q. F., Shen B. S., Dai X. K., Mei M. H., Saghai Maroof M. A. and Li Z. B. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genetic male sterility in rice. Proc. Natl. Acad. Sci., USA. 91: 8675–8679.

    CAS  Google Scholar 

  • Zhang Q. F., Zhou Z. Q., Yang G. P., Xu C. G., Liu K. D. and Saghai Maroof M. A. 1996. Molecular marker heterozygosity and hybrid performance in indica and japonic a rice. Theor. Appl. Genet., 93: 1218–1224.

    Google Scholar 

  • Zhang Z. G., Yuan S. C., Zen H. L., Li Y. Z., Li Z. C. and Wei C. L. 1991. Preliminary observation of fertility changes in the new type temperature sensitive male-sterile rice. IV A. Hybrid Rice, 1: 31–34.

    Google Scholar 

  • Zuber M. S. and Darrah L. L. 1980. 1979 US corn germplasm base. Corn Sorghum Res. Conf., 35: 234–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dhillon, B.S., Singh, A.K., Lather, B.P.S., Srinivasan, G. (2004). Advances in Hybrid Breeding Methodology. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics