Plant Breeding pp 391-406 | Cite as

Population Improvement Strategies for Crop Improvement

  • S. K. Vasal
  • N. N. Singh
  • B. S. Dhillon
  • S. J. Patil

Abstract

Recurrent selection is an important breeding method employed to improve the populations of crop plants particularly those of cross-pollinated species. It may be undertaken in one (intra-population improvement) or two populations (inter-population improvement) to upgrade the performance per se or combining ability. Intra-population improvement may involve evaluation of individuals (mass selection) or of progenies (full-sibs, half-sibs or selfed progeny selection) that have been developed within a population or test-cross progenies developed by using a tester (related or unrelated, narrow or broad-genetic base). Various methods of intra-population improvement aim at enhancement of the performance of the population per se, random mated or selfed generation, except that in case of test-cross progenies evaluation, the emphasis is on improving combining ability. Inter-population improvement involves simultaneous improvement of two heterotic populations with a focus on their combining ability. In inter-population improvement methods, also known as reciprocal recurrent selection, there are two important alternatives, based on the evaluation of half-sib or full-sib progenies developed by using the other heterotic population or inbred line from that as a tester. There are several possible modifications and additional features of various intra- and inter-population methods that can be incorporated to meet specific objectives of a programme. The integration of population improvement and hybrid research activities, and the improvement of traits related to stress have also been discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arboleda-Rivera Fernando and Compton W. A. 1974. Differential response of maize to mass selection in diverse selection environments. Theor. Appl. Genet., 44: 77–81.CrossRefGoogle Scholar
  2. Brimm C. A. and Stubers C. W. 1973. Application of genetic male sterility to recurrent selection schemes in soybean. Crop Sci., 13: 528–530.CrossRefGoogle Scholar
  3. Bolanas J. and Edmeades G. O. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize, II: Responses in reproductive behaviour. Field Crops Res., 31: 253–268.CrossRefGoogle Scholar
  4. CIMMYT. 1984. Development, maintenance and seed production of open-pollinated varieties. Mexico, D. F.Google Scholar
  5. Compton W. A., Mumm R. F. and Mathema B. 1979. Progress from adaptive mass selection in imcompletely adapted maize populations. Crop Science, 19: 531–533.CrossRefGoogle Scholar
  6. Compton W. A. and Bahadur K. 1977. Ten cycles of progress from modified ear-to-row selection in corn. Crop Sci., 17: 378–380.CrossRefGoogle Scholar
  7. Compton W. A. and Comstock E. E. 1976. More on modified ear-to-row selection in corn. Crop Sci., 16: 122.CrossRefGoogle Scholar
  8. Comstock R. E., Robinson H. F. and Harvey P. H. 1949. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J., 41: 360–367.CrossRefGoogle Scholar
  9. De Leon C. and Pandey S. 1989. Improvement of resistance to ear and stalk rots and agronomic traits in tropical maize gene pools. Crop Sci., 29: 12–17.CrossRefGoogle Scholar
  10. Dhillon B. S. 1991a. Alternate recurrent selection of S1 and half-sib families for intra-population improvement. Maydica, 36: 45–48.Google Scholar
  11. Dhillon B. S. 1991b. Recurent mass selection based on selfed-plant evaluation in allogamous species. Crop Sci., 31: 1075–1077.CrossRefGoogle Scholar
  12. Dhillon B. S. 1993. Alternate recurrent selection. Crop Sci., 33: 650.CrossRefGoogle Scholar
  13. Dhillon B. S. 1998. Recurrent selection for combining ability and performance per se of cross-bred and selfed families. Maydica, 43: 155–160.Google Scholar
  14. Dhillon B. S. and Khehra A. S. 1989. Modified S1 recurrent selection in maize improvement. Crop Sci., 29: 226–228.CrossRefGoogle Scholar
  15. Dhillon B. S. and Malhi N. S. 1996. Recent advances in recurrent selection for intra-population improvement. Crop Improv., 11: 88–91.Google Scholar
  16. Dhillon B. S., Khehra A. S. and Singh M. 1987. Modified full-sib selection and estimation of genetic parameters. Theor. Appl. Genet., 73: 672–674.Google Scholar
  17. Dhillon B. S., Malhi N. S., Saxena V. K. and Khehra A. S. 1986. Hico breeding in maize, p. 279–285. In: New Frontiers in Breeding Researches, (eds. ) B. Napompeth and S. Subhadrabandhu, Kasetsart Univ., Bangkok, Thailand.Google Scholar
  18. Eberhart S. A. 1970. Factors affecting efficiencies of breeding methods. Agri. Soils, 15: 669–680.Google Scholar
  19. Eberhart S. A., Harrison M. N. and Ogada F. 1967. A comprehensive breeding method. Zuchter, 37: 169–174.Google Scholar
  20. Empig L. T., Gardner C. O. and Compton W. A. 1972. Theoretical gains for different population improvement procedures. Nebr. Agri. Exp. Sta. Bull., MP26 (rev. ), Lincoln, NE.Google Scholar
  21. Gardner C. O. 1961. An evaluation of mass selection and seed irradiation with thermal neutrons on yield of corn. Crop Sci., 1: 241–245.CrossRefGoogle Scholar
  22. Gardner C. O. 1969. The role of mass selection and mutagenic treatment in modern corn breeding, p 15–21. In: Proc. 24th Corn Res. Conference, American Seed Trade Association.Google Scholar
  23. Gardner C. O. 1977. Quantitative Genetic Studies and population improvement in maize and sorghum, pp. 475–489. In: Proc. Int. Conf. Quant. Genetics, (eds. ) E. Pollak, O. Kempthorne and T. B. Bailey Jr., Iowa State Univ. Press, AmeGoogle Scholar
  24. Gardner C. O. 1978. Population improvement in maize. Pp 207–228. In: Maize Breeding and Genetics, (ed. ) D. B. Waiden, John Wiley and Sons, New York, USA.Google Scholar
  25. Gill K. S. 1980. Recent concepts in breeding methodology of self-pollinated crops, pp. 39–58, In: Breeding methods for the improvement of pulse crops, (ed. ) K. S. Gill, Indian Council of Agricultural Research, New Delhi.Google Scholar
  26. Gilmore E. C. Jr. 1964. Suggested method of using reciprocal recurrent selection in some naturally self-pollinated species. Crop Sci., 4: 323–325.CrossRefGoogle Scholar
  27. Good R. L. and Hailauer A. R. 1977. Inbreeding depression in maize by selfing and full-sibling. Crop Sci., 17: 925–940.CrossRefGoogle Scholar
  28. Granades G., Pandey S. and Ceballas H. 1993. Response to selection for tolerance to acid soils in a tropical maize population. Crop Sci., 33: 936–940.CrossRefGoogle Scholar
  29. Hallauer A. R. 1970. Zygote selection for the development of single cross hybrids in maize. Adv. Front. Plant Sci., 25: 75–81.Google Scholar
  30. Hallauer A. R. 1973. Hybrid development and population improvement in reciprocal full-sib selection. Egyptian J. Genetic. Cytology, 1: 84–101.Google Scholar
  31. Hallauer A. R. 1975. Relation of gene action and types of testers in maize breeding procedures. Corn Sorghum Res. Corp., 30: 150–165.Google Scholar
  32. Hallauer A. R. 1981. Selection and breeding methods, pp. 3–55. In: Plant Breeding II. (ed. ) K. J. Frey, Iowa State University Press, Ames., Iowa.Google Scholar
  33. Hallauer A. R. 1984. Reciprocal full-sib selection in maize. Crop Sci., 24: 755–759.CrossRefGoogle Scholar
  34. Hallauer A. R. 1992. Recurrent selection in maize. Plant Breed. Rev., 9: 115–179.Google Scholar
  35. Hallauer A. R. 1994. Registration of BS28 and BS29 maize germplasm. Crop Sci., 34: 544–545.CrossRefGoogle Scholar
  36. Hallauer A. R. and Eberhart S. A. 1970. Reciprocal full-sib selection. Crop Sci., 10: 315–316.CrossRefGoogle Scholar
  37. Hallauer A. R. and Miranda J. B. 1988. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames., Iowa.Google Scholar
  38. Hallauer A.R ., Russell W.A . and Lamkey K.R. 1988. Corn breeding. In: Corn and Corn improvement. (eds.) G.F. Sprague and J.W. Dudley, Am. Soc. Agron ., Madison. Wisconsin.Google Scholar
  39. Hallauer A. R. and Sears J. H. 1972. Integrating exotic germplasm into corn belt maize breeding programs. Crop Sci., 12: 203–206.CrossRefGoogle Scholar
  40. Hanson W. D., Probst A. H. and Caldwell B. E. 1967. Evaluation of a population of soybean genotypes with implications for improving self pollinated crops. Crop Sci., 7: 99–103.CrossRefGoogle Scholar
  41. Hopkins C. G. 1896. Improvement in the chemical composition of the corn kernel. Illinois Agr. Expt. Sta. Bull., 55: 205–240.Google Scholar
  42. Hull F. H. 1945. Recurrent selection and specific combining ability in corn. J. Am. Soc. Agron., 37: 134–145.CrossRefGoogle Scholar
  43. Jenkins M. T. 1940. The segregation of genes affecting yield of grain in maize. J. Am. Soc. Agron., 32: 55–63.Google Scholar
  44. Jenson N. F. 1970. A diallel selective mating system for cereal breeding. Crop Sci., 10: 629–635.CrossRefGoogle Scholar
  45. Jenson N. F. 1978. Composite breeding methods and the DSM system in cereals. Crop Sci., 18: 622–626.CrossRefGoogle Scholar
  46. Johnson E. C., Fischer K. S., Edmeades G. O. and Palmer A. F. E. 1986. Recurrent selection for reduced plant height in low land tropical maize. Crop Sci., 26: 253–260.CrossRefGoogle Scholar
  47. Jugenheimer R. W. 1985. Corn improvement, seed production and uses. Robert E. Krieger Publishing, Malabar, FL, USA.Google Scholar
  48. Lonnquist J. H. 1964. Modification of the ear. -to-row procedure for the improvement of maize populations. Crop Sci, 4: 227–228.CrossRefGoogle Scholar
  49. Lonnquist J. H. 1967. Mass selection for prolification in maize. Zuchter, 37: 185–188.Google Scholar
  50. Miller P. A. and Rawlings J. O. 1967. Break-up of initial linkage blocks through inter-mating in a cotton breeding population. Crop Sci., 7: 199–204.CrossRefGoogle Scholar
  51. Moll R. H. and Stuber C. W. 1974. Quantitative genetics: Emperical results relevant to plant breeding. Adv. Agron., 26: 277–313.CrossRefGoogle Scholar
  52. Pandey S. and Gardner C. O. 1992. Recurrent selection for population, variety and hybrid development in tropical maize. Adv. Agron., 48: 1–87.CrossRefGoogle Scholar
  53. Pandey S., Vasal S. K. and Deutsch J. A. 1991. Performance of open-pollinated maize cultivars selected from 10 tropical maize populations. Crop Sci., 31: 285–289.CrossRefGoogle Scholar
  54. Pandey S., Vasal S. K., De Leon C., Ortega A. C., Granades G. and Villegas E. 1984. Development and improvement of maize populations. Genetika, 16: 23–42.Google Scholar
  55. Paterniani E. 1990. Maize breeding in the tropics. Crit. Rev. Plant Sci., 9: 125–154.CrossRefGoogle Scholar
  56. Paterniani E. 1967. Selection among and within half-sib families in a Brazilian population of maize (Zea mays L. ). Crop Sci., 7: 212–216.CrossRefGoogle Scholar
  57. Rajaram S. 1987. Objective and methodology of CIMMYT wheat breeding programme in global context. Proc. First Symp. Crop Improv., 1: 131–146.Google Scholar
  58. Russell W. A., Blackburn D. J. and Lamkey K. R. 1992. Evaluation of a modified reciprocal recurrent selection procedure for maize improvement. Maydica, 37: 61–67.Google Scholar
  59. Russell W. A., Eberhart S. A. and Vega U. A. 1973. Recurrent selection for specific combining for yield in two maize populations. Crop Sci., 13: 257–261.CrossRefGoogle Scholar
  60. San Vicente F. M. and Hallauer A. R. 1993. Mass selection for adaptation in Antigua maize (Zea mays L. ) composite. J. Iowa Acad. Sci., 100: 9–12.Google Scholar
  61. Singh M., Khehra A. S. and Dhillon B. S. 1986. Direct and correlated response to recurrent full-sib selection for prolificity in maize. Crop Sci., 26: 275–278.CrossRefGoogle Scholar
  62. Sorrels M. E. and Fritz S. E. 1982. Application of a dominant male-sterile allele to the improvement of self-pollinated crops. Crop Sci., 22: 1033–1035.CrossRefGoogle Scholar
  63. Sprague G. F. and Eberhart S. A. 1977. Corn breeding, pp. 305–362. In: Corn and Corn Improvement. (ed. ) G. F. Sprague, Am. Soc. Agron. Madison, Wisconsin, USA.Google Scholar
  64. Torregroza M. and Harpstead D. D. 1967. Effects of mass selection for ears per plant in maize. Agron. Abstr., P. 20.Google Scholar
  65. Troyer A. F. and Brown W. L. 1972. Selection for early flowering in corn. Crop Sci., 12: 301–304.CrossRefGoogle Scholar
  66. Troyer A. F. and Brown W. L. 1976. Selection for early flowering in corn. Seven late synthetics. Crop Sci., 16: 695–697.CrossRefGoogle Scholar
  67. Vasal S. K. 1994. High quality protein corn. P. 80–121. In: Specialty Corns, (ed. ) A. R. Hallauer, CRC Press, Boca Raton.Google Scholar
  68. Vasal S. K., Ortega A. C. and Pandey S. 1982. CIMMYT’s maize germplasm management, improvement and utilization program. CIMMYT, Mexico, DF.Google Scholar
  69. Vasal S. K., Dhillon B. S. and Srinivasan G. 1995. Changing scenario of hybrid maize breeding and research strategies to develop two-parent hybrids, pp. 19–36. In: Hybrid Research and Development, (eds. ) M. Rai and S. Mauria, Ind. Soc. Seed Tech., New Delhi.Google Scholar
  70. Vasal S. K., Dhillon B. S. and Pandey S. 1997. Recurrent selection methods based on evaluation-cum-recombination block. Plant Breed. Rev., 14: 39–63.Google Scholar
  71. Vasal S. K., Cordora H. S., Beck D. L. and Edmeades G. O. 1997. Choices among breeding procedures and strategies for developing stress tolerant maize germplasm. In: Proc. Developing Drought and Low N-tolerant Maize, (eds. ) G. O. Edmeades et al., 25-29 March, 1996. CIMMYT, El Batan, Mexico.Google Scholar
  72. Vasal S. K., Cordora H. S., Pandey S. and Srinivasan G. 1999. Tropical maize and heterosis, pp. 363–375. In: Genetics and Exploitation of Heterosis in Crops, (eds. ) J. G. Coors and S. Pandey, Amer. Soc. Agron., Madison, Wisconsin, USA.Google Scholar
  73. Verma M. M. 1986. Recurrent selection for improvement in self-pollinated crops, pp. 39–54, In: Genetics and Crop Improvement, (eds. ) P. K. Gupta and J. R. Bahl, Rastogi and Co., Meerut, India.Google Scholar
  74. Verma M. M., Kochhar S. and Kapoor W. R. 1977. The assessment of biparental approach in a wheat cross. Z Pflanzenzuchtg, 82: 174–181.Google Scholar
  75. Webel O. D. and Lonnquist J. H. 1967. An evaluation of modified ear-to-row selection in a population of corn (Zea mays L. ). Crop Sci., 7: 651–655.CrossRefGoogle Scholar
  76. Yunus M. and Paroda R. S. 1982. Impact of biparental mating on correlation coefficients in bread wheat. Theor. Appl. Genet., 62: 337–343.Google Scholar
  77. Zhang Shihuang and Shi Dequan. 2000. QPM breeding program in China. In: Proc. Seventh Asian Regional Maize Workshop. PCARRD, Las Banos, Philippines. (eds. ) Vasal S. K., Gonzalez Cericeris F. and Fan Xing Ming.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S. K. Vasal
    • 1
  • N. N. Singh
    • 2
  • B. S. Dhillon
    • 3
  • S. J. Patil
    • 4
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)Mexico
  2. 2.Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.National Bureau of Plant Genetic ResourcesNew DelhiIndia
  4. 4.University of Agricultural SciencesDharwadIndia

Personalised recommendations