Hundred Years of Genetics: Revisiting some of the Landmarks

  • H. K. Jain


The human genome sequence report published in the year 2000 followed the rediscovery of Mendel’s laws of biological inheritance a hundred years earlier. The intervening period has been marked by major discoveries which have become landmarks in the history of genetics. The present paper recounts some of these landmark discoveries. The treatment is not exhaustive; rather an attempt has been made to show how one important finding followed another in rapid succession, as important questions were asked at each stage. This only indicates the intense interest of a large number of scientists from different disciplines as the young science started to unfold its potential as an integrating force in biology.


Genetic Code Avirulent Strain Chromosome Theory Deoxyribose Nucleic Acid Mendelian Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avery O. T., MacLeod C. M. and McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med., 79: 137.PubMedCrossRefGoogle Scholar
  2. Bateson W. 1909. Mendel’s Principles of Heredity. Cambridge University Press, Cambridge, U. K.CrossRefGoogle Scholar
  3. Beadle G. W. and Tatum E. L. 1941. Genetic control of biochemical reaction in Neurospora, Proc. Natl. Acad Sci., 27: 499.CrossRefGoogle Scholar
  4. Benzer S. 1955. Fine structure of a genetic region in bacteriophage. Proc. Natl. Acad. Sci. 41: 344.PubMedCrossRefGoogle Scholar
  5. Botstein D., White R. L., Sholnick M. and Davies R. W. 1980. Construction of a genetic linkage map in man using restriction fragment polymorphism. Amer. J. Human Genetics, 32: 314.Google Scholar
  6. Boveri T. 1902. Uber mehrpolige Mitosen als Mittel zur Analyse der Zelkerns. Verh. phys. Med. Gesellsch. Wurzburg. 35: 67.Google Scholar
  7. Brenner S., Stretton A. O. W, and Kaplan S. 1965. Genetic code: The “non-sense” triplets for chain termination and their suppression. Nature, 206: 994.PubMedCrossRefGoogle Scholar
  8. Bridges C. B. 1916. Nondisjuction as a proof of the chromosome theory of heredity. Genetics, 1: 107.PubMedGoogle Scholar
  9. Britten R. J. and Kohne D. E. 1968. Repeated sequences in DNA. Science, 161: 359.CrossRefGoogle Scholar
  10. Chargaff E. 1950. Chemical specificity of the nucleic acids and mechanism of their enzymatic degradation. Experientia, 6: 201.PubMedCrossRefGoogle Scholar
  11. Correns C. 1900. G. Mendel Regel uber das Verhalten der Nachkommenschft der Rassenbastarde. Ber. deutsch. botan. Gesellsch, 18: 158. English translation available in The Birth of Genetics, published as a supplement to 1950 volume of Genetics, 33-41.Google Scholar
  12. Creighton M. R. and McClintock B. 1931. A correlation of cytological and genetical crossing over in Zea mays. Proc. Natl. Acad. Sci., 17: 485.CrossRefGoogle Scholar
  13. Crick F. H. C., Barnett L, Brenner S. and Watts-Tobin R. J. 1961. General nature of the genetic code for proteins. Nature, 192: 1227.PubMedCrossRefGoogle Scholar
  14. Darlington C. D. 1965. Recent Advances in Cytology. Churchill, London.Google Scholar
  15. Darwin C. 1859. The Origin of Species, John Muray, London, U. K.Google Scholar
  16. De Vries H. 1900. Sur la loi de disjoinetion des hybrids, C. R. Acad. Sci. (Paris), 130: 845. (See English translation in The Birth of Genetics, Suppl. Genetics, 1950, volume 30-32.Google Scholar
  17. Dobzhansky Th. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.Google Scholar
  18. Doolittle W. F. and Sapienza. 1980. Selfish genes, the phenotype paradigm, and genome evolution. Nature, 284: 601–603.PubMedCrossRefGoogle Scholar
  19. East E. M. 1916. Studies on size inheritance in Nicotiana. Genetica, 1: 164.Google Scholar
  20. Fisher R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, U. K.Google Scholar
  21. Freeze E. 1959. The difference between spontaneous and base-analogue induced mutations of phage T4. Proc. Natl. Acad. Sci., 45: 622.CrossRefGoogle Scholar
  22. Freese E. 1963. Molecular Mechanisms of Mutations. In: Molecular Genetics, Part 1, (ed. ) J. H. Taylor, Academic Press, New York, pp. 207.Google Scholar
  23. Gilbert W. and Muller-Hill B. 1965. Isolation of the lac repressor. Proc. Natl. Acad. Sci., 58: 2415.CrossRefGoogle Scholar
  24. Garrod A. E. 1909. Inborn Errors of Metabolism. Oxford Univ. Press, Oxford, U. K.Google Scholar
  25. Griffith F. 1928. The significance of pneumococcal types. J. Hygiene, 27: 113.CrossRefGoogle Scholar
  26. Haidane J. B. S. 1932. The Causes of Evolution, Longman, London.Google Scholar
  27. Hershey A. D. and Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol., 36: 39.PubMedCrossRefGoogle Scholar
  28. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature, 409: 860.CrossRefGoogle Scholar
  29. Jacob F. and Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3: 318.PubMedCrossRefGoogle Scholar
  30. Jain H. K. 1980. Incidental DNA. Nature, 288: 647.PubMedCrossRefGoogle Scholar
  31. Johannsen W. 1909. Elemente der Exakten Erblichkeitslehre, Fisher, Jena 516 pp. Classic Papers in Genetics, (ed. ) Peters J. A., Prentice Hall, 1959.Google Scholar
  32. Khorana H. G., Bochi H., Ghosh H., Gupta H., Jacob F., Kossel T. M., Morgan R., Narang R., Ohtsuka S. A. and Wells R. D. 1967. Polynucleotide synthesis and the genetic code. Cold. Symp. Harb. Symp. Quant. Biol., 31: 39.CrossRefGoogle Scholar
  33. Lederberg J. and Tatum E. L. 1946. Gene recombination in E. coli, Nature, 158: 558.Google Scholar
  34. Lindergren C. C. 1993. The genetics of Neurospora III. Pure bred stocks and crossing over in N. crassa, Bull. Torrey Bot. Club, 60: 133.CrossRefGoogle Scholar
  35. Luria S. E. and Delbruck M. 1943. Mutation of bacteria from virus sensitivity to virus resistance. Genetics, 28. 491.PubMedGoogle Scholar
  36. Mather K. 1943. Polygenic inheritance and natural selection. Biol. Rev., 18: 32.CrossRefGoogle Scholar
  37. McClintock B. 1951. Chromosome organization and gene expression. Cold Spring Harb. Symp., 16: 13–47.CrossRefGoogle Scholar
  38. McClung C. E. 1901. Notes on the accessory chromosome. Anat. Anz., 20: 220.Google Scholar
  39. Mendel G. J. 1866. Versuche uber Pflanzenhybriden. Verh. Naturforsch. Ver. Brunn., 4: 3–47. Following English translation are available: J. Roy. Hort. Soc, 26; Mendel’s Principles of Heredity, Gabriel and Fogel, 1955; Classic Papers in Genetics, (ed. ) Peters J. A., Prentice Hall, 1959.Google Scholar
  40. Meselson M. and Stahl F. W. 1958. The replication of DNA in E. coli. Proc. Natl. Acad. Sci., 44: 671.CrossRefGoogle Scholar
  41. Morgan T. H. 1910. Sex limited inheritance in Drosophila. Science, 32: 120.Google Scholar
  42. Morgan T. H. and Bridges C. B. 1916. Sex-linked inheritance in Drosophila. Carnegie Inst. Wash. Publ. No. 237: 1.Google Scholar
  43. Muller H. J. 1927. Artificial transmutation of the gene. Science, 66: 84.PubMedCrossRefGoogle Scholar
  44. Muller H. J. 1962. Studies in Genetics. The Selected Papers of H. J. Muller. Indiana University Press, with a foreword by Joshua Lederberg and a tribute to Muller as a Teacher by G. Pontecurvo.Google Scholar
  45. Nirenberg M. W. and Matthei J. H. 1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci., 47: 1588.PubMedCrossRefGoogle Scholar
  46. Nirenberg M. W. and Leder P. 1964. RNA codewords and protein synthesis: The effect of trinucleotides upon the binding of sRNA to ribosomes. Science, 145: 1399.PubMedCrossRefGoogle Scholar
  47. Orgel L. E. and Crick F. H. C. 1980. Selfish DNA: The ultimate parasite. Nature, 284: 604–607.PubMedCrossRefGoogle Scholar
  48. Rich Alexander. 1995. The nucleic acids. A backward glance. In: DNA: The Double Helix. (ed. ) Donald A. Chambers, The New York Academy of Sciences, pp. 97–142.Google Scholar
  49. Sarabhai A., Stretton A. D. W., Brenner S. and Bolle A. 1964. Colinearity of the gene with polypeptide chain. Nature, 201: 13.PubMedCrossRefGoogle Scholar
  50. Smith H. O. 1979. Nucleotide sequence specificity of restriction endonucleases. Science, 205: 455–462.PubMedCrossRefGoogle Scholar
  51. Sturtevant A. H. 1913. The linear arrangement of sex-linked factors in Drosophila as shown by their mode of association. Exp. Zool, 14: 43.CrossRefGoogle Scholar
  52. Sutton W. S. 1902. The Chromosomes in heredity. Biol. Bull., 4: 231.CrossRefGoogle Scholar
  53. Taylor J. H., Woods P. S. and Hughes W. I. 1957. The organisation and duplication of chromosomes as revealed by autoradiographic studies using tritium labelled thymidine. Proc. Natl. Acad. Sci, 45: 122.CrossRefGoogle Scholar
  54. Tschermak E. 1900. Ueber kunstliche Kreuzung bei Pisum sativum. Zeits. Landw. Verschsw. Oesterr., 3. Heft 5. English translation in The Birth of Genetics, supplement to 1950. (volume 35) of Genetics.Google Scholar
  55. Venter J. C. et al. 2001. The sequence of the human genome. Science, 291: 1304.PubMedCrossRefGoogle Scholar
  56. Watson J. D. and Crick F. H. C. 1953a. A structure for deoxyribose nucleic acid. Nature, 171: 131.Google Scholar
  57. Watson J. D. and Crick F. H. C. 1953b. Genetical implications of the structure of deoxyribonucleic acid. Nature, 171: 964.PubMedCrossRefGoogle Scholar
  58. Wilkins M. H. F., Stokes A. R. and Wildon H. R. 1953. Molecular structure of deoxypentose nucleic acids. Nature, 171: 738.PubMedCrossRefGoogle Scholar
  59. Wilson E. B. 1905. The chromosomes in relation to the determination of sex in insects. Science, 22: 500–502.PubMedCrossRefGoogle Scholar
  60. Witkin E. M. 1969. The role of DNA repair and recombination in mutagenesis. Proc. XII Intern. Congr. Genetics, 3: 225.CrossRefGoogle Scholar
  61. Wright S. 1951. Genetic structure of populations. Ann. Eugenics, 15: 323–354.Google Scholar
  62. Wright S. 1978. Evolution and the Genetics of Populations, Vol. 4., Variability within and among natural population. The University of Chicago Press, Chicago.Google Scholar
  63. Yanofsky C. 1960. The tryptophan synthetase systems. Bact. Rev., 24: 221.PubMedGoogle Scholar
  64. Yanofsky C., Horn V. and Thorpe D. 1964. Protein structure relationships revealed by mutational analysis. Science, 146: 1593.PubMedCrossRefGoogle Scholar
  65. Yanofsky C., Cox E. C. and Horn V. 1966. The unusual specificity of an E. coli mutator gene. Proc. Nat. Acad. Sci., 55: 274–281.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • H. K. Jain
    • 1
  1. 1.Centre for Science WritingNew DelhiIndia

Personalised recommendations