Skip to main content

Photosynthesis in Marine Macroalgae

  • Chapter
Photosynthesis in Algae

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 14))

Summary

Marine macrophytes live in a highly variable environment in respect to light, UV-radiation, temperature and also salinity. During evolution their metabolism has adapted to these strongly changing conditions, especially in the upper littoral zone. In the lower subtidal, the photosynthetic apparatus has adapted to low light conditions, to absorb maximally the incident photons and to utilize the absorbed energy with high efficiency. In the intertidal and upper sublittoral zone the photosynthetic apparatus is exposed to strong light stress when the absorbed amount of light energy is higher than the organism can use for its metabolism. This happens generally when plants are exposed to irradiances, which are above the mean level of irradiation occurring at their growth sites (e.g., light flecks or low tide around noon). Under light stress the amount of thermal energy dissipation increases and the energy flowing into photochemistry decreases also. Photoinhibition causes a decrease of the photosynthetic quantum yield (dynamic inhibition) and at much higher fiuence rates or after a longer duration of high irradiation, also a decrease of the photosynthetic capacity (chronic inhibition). The absorption cross- section of the chromatophores can be diminished by chloroplast displacement or shrinking, especially in brown algae, which decreases the rate of photodamage to the light-absorbing apparatus. Irradiances, which exceed the protective capacities of these mechanisms, cause irreversible damage to the photosynthetic apparatus. Normally, the latter does not occur for long at the natural growth sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams III WW and Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186: 390–398

    CAS  Google Scholar 

  • Andersson B, Salter AH, Virgin I, Vass I and Styring S (1992) Photodamage to Photosystem II—primary and secondary events. J Photochem Photobiol B: Biol 15: 15–31

    Google Scholar 

  • Beardall J, Beer S and Raven JA (1998) Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance. Bot Marina 41: 113–123

    CAS  Google Scholar 

  • Beer S and Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131: 613–617

    Google Scholar 

  • Beer S and Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141: 199–204

    Google Scholar 

  • Beer S and Levy I (1983) Effects of photon fluence rate and light spectrum composition on growth, photosynthesis and pigment relations in Gracilaria sp. J Phycol 19: 516–522

    CAS  Google Scholar 

  • Beer S, Ilan M, Eshel A, Weil A and Brickner I (1998a) Use of pulse modulated (PAM) fluoromctry for in situ measurements of photosynthesis in two Red Sea faviid corals. Mar Biol 131: 607–612

    Google Scholar 

  • Beer S, Vilenkin B, Weil A, Veste M, Susel L and Eshel A (1998b) Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fiuorometry. Mar Ecol Prog Ser 174: 293–300

    CAS  Google Scholar 

  • Beer S, Larsson C, Poryan O and Axelsson L (2000) Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated fluorescence. Eur J Phycol 35: 69–74

    Google Scholar 

  • Berry A.T and Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Google Scholar 

  • Biebl R (1962) Seaweeds. In: Lewin RA (ed) Physiology and Biochemistry of Algae, pp 799-815. Academic Press, New York, London

    Google Scholar 

  • Bischoff B and Wiencke C (1995a) Temperature ecotypes and biogeography of Acrosiphonales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30: 19–27

    Google Scholar 

  • Bischoff B and Wiencke C (1995b) Temperature adaptation in strains of the amphi-equatorial green alga Urospora penicilliformis (Acrosiphonales): Biogeographical implications. Mar Biol 122: 681–688

    Google Scholar 

  • Bischof K, Hanelt D and Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1: 435–444

    CAS  Google Scholar 

  • Bischof K, Hanelt D and Wiencke C (2000) UV-radiation and Arctic marine macroalgae. In: Hessen D (ed) UV-radiation and Arctic ecosystems. Ecological Studies Series Vol 153, pp 227-243. Springer, New York, Heidelberg

    Google Scholar 

  • Bischoff-Bäsmann B and Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32: 525–535

    Google Scholar 

  • Bischoff-Bäsmann B, Bartsch I, Xia B and Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P. R. China) Phycol Res 45: 91–104

    Google Scholar 

  • Björn LO (1993) Light. Technical report. Department of Plant Physiology, University of Lund

    Google Scholar 

  • Björn LO, Callaghan TV, Gehrke C, Johanson U and Sonesson M (1999) Ozone depletion, ultraviolet radiation and plant life. Chemosphere: Global Change Sci 1: 449–454

    Google Scholar 

  • Breeman AM (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In: Beukema JJ, Wolf WJ and Joop JWM (eds) Expected Effects of Climate Change in Marine Coastal Ecosystems, pp 69-76. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Britz SJ (1979) Chloroplast and nuclear migration. In: Haupt W and Feinleib ME (eds) Physiology of Movements, pp 170-205. Encyclopedia of Plant Physiology, Vol 7. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Britz SJ and Briggs WR (1987) Chloroplast movement and light transmission in Ulva: The sieve effect in a light scattered system. Acta Physiol Plant 9: 149–162

    Google Scholar 

  • Brouwer PEM (1996) In situ photosynthesis and estimated annual production of the red alga Myriogramme mangini in relation to underwater irradiance at Signy Island (Antarctica). Antarct Sci 8: 245–252

    Google Scholar 

  • Brugnoli E and Björkman O (1992) Chloroplast movement in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to pH and zeaxanthin formation. Photosynth Res 32: 23–35

    CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29: 345–378

    CAS  Google Scholar 

  • Coutinho R and Zingmark R (1987) Diurnal photosynthetic responses to light by macroalgae. J Phycol 23: 336–343

    Google Scholar 

  • Critchley C and Russell AW (1994) Photoinhibition of photosynthesis in vivo: The role of protein turnover in Photosystem II. Physiol Plant 92: 188–196.

    CAS  Google Scholar 

  • Davison IR (1987) Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J Phycol 23: 273–283

    Google Scholar 

  • Davison, IR (1991) Environmental effects on algal photosynthesis: Temperature. J Phycol 27: 2–8

    Google Scholar 

  • Davison IR and Davison JO (1987) The effect of growth temperature on enzyme activities in the brown alga Laminaria saccharina. Br Phycol J 22: 77–87

    Google Scholar 

  • Davison IR and Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32: 197–211

    Google Scholar 

  • Davison IR, Greene RM and Podolak EJ (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110: 449–454

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16: 215–245

    Google Scholar 

  • Döhler G, Hagmeier E and David C (1995) Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J Photochem Photobiol B 30: 179–187

    Google Scholar 

  • Drew EA(1977a) Physiology of Laminaria. II. Seasonal variation of photosynthesis and respiration in Laminaria digitata Lamour., L. hyperborea (Gunn.) Fosl. and L. saccharina (1.) Lamour and a model for calculation of annual carbon budgets. P. S. Z. N. I: Mar Ecol 4: 227–250

    Google Scholar 

  • Drew EA (1977b) Physiology of photosynthesis and respiration in some Antarctic marine algae. Br Antarct Surv Bull 46: 59–76

    Google Scholar 

  • Drew EA and Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 31: 262–277

    Google Scholar 

  • Dring MJ (1981) Photosynthesis and development of marine macrophytes in natural sun light spectra. In: Smith H (ed) Plants and the Day Light Spectrum, pp 297-314. Academic Press, London

    Google Scholar 

  • Dring MJ (1982) The Biology of Marine Plants. Edward Arnold, London

    Google Scholar 

  • Dring MJ, Makarov V, Schoschina E, Lorenz M and Liming K (1996) Influence of ultraviolet-radiation on chlorophyll fluorescence and growth in different life-history stages of three species of Laminaria (phaeophyta). Mar Biol 126: 183–191

    CAS  Google Scholar 

  • Duartc CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112

    Google Scholar 

  • Dudgeon SR, Kübier JE, Vadas RL and Davison IR (1995) Physiological responses to environmental variation in intertidal red algae: Does thallus morphology matter? Mar Ecol Prog Ser 117: 193–206

    Google Scholar 

  • Duggins DO, Simenstad CA and Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science Wash 245: 170–173

    CAS  Google Scholar 

  • Dunton KH and Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan High Arctic. Mar Biol 98: 277–285

    Google Scholar 

  • Edgar JG and Shaw C (1995a) The production and trophic ecology of shallow-water fish assemblages in southern Australia I. Species richness, size-structure and production of fishes in Western Port, Victoria. J Exp Mar Biol Ecol, 194: 53–81

    Google Scholar 

  • Edgar JG and Shaw C (1995b) The production and trophic ecology of shallow-water fish assemblages in southern Australia III. General relationships between sediments, seagrasses, invertebrates and fishes. J Exp Mar Biol Ecol, 194: 107–131

    Google Scholar 

  • Eggert A and Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23: 609–618

    Google Scholar 

  • Engelmann TW (1883) Farbe und Assimilation. Botan Zentr 41: 1–29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Botan Zentr 42: 82–95

    Google Scholar 

  • Farman JC, Gardiner BG and Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal C1Ox/NOx interaction. Nature 315: 207–210

    CAS  Google Scholar 

  • Fillit M (1995) Seasonal changes in the photosynthetic capacities and pigment content of Ulva rigida in a Mediterranean coastal lagoon. Bot Mar 38: 271–280

    Google Scholar 

  • Fischer G and Wiencke C (1992) Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar Biol 12: 341–348

    Google Scholar 

  • Franklin LA and Forster RM (1997) The changing irradiance environment: Consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32: 207–232

    Google Scholar 

  • Franklin LA, Levavasseur G, Osmond CB, Henley WJ and Ramus J (1992) Two components of onset and recovery during photoinhibition of Ulva rolundata. Planta 186: 399–408

    CAS  Google Scholar 

  • Furshansky L (1981) Optical properties of plants. In: Smith H (ed) Plants and the Daylight Spectrum, pp 21-40. Academic press, London, New York

    Google Scholar 

  • Genty B, Brianlais JM and Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Gerard VA (1988) Ecotypic differentiation in light related traits of the kelp Laminaria saccharina. Mar Biol 97: 25–36

    Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and the xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37: 13582–13593

    PubMed  CAS  Google Scholar 

  • Glover HE, Keller MD and Guillard RRL (1986) Light quality and oceanic ultraphytoplankters. Nature 319: 142–142

    Google Scholar 

  • Glover HE, Keller MD and Spinrad RW (1987) Effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105: 137–159

    Google Scholar 

  • Gomez I (1997) Life strategy and ecophysiology of Antarctic macroalgae. Ber Polarforsch 238: 1–99

    Google Scholar 

  • Gomez I and Wiencke C (1996) Photosynthesis, dark respiration and pigment content of gametophytes and sporophytcs of the Antarctic brown alga Desmarestia menziesii. Bot Mar 39: 149–157

    CAS  Google Scholar 

  • Gomez I and Wiencke C (1997) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic day lengths. Bot Acta 110: 25–31

    CAS  Google Scholar 

  • Gomez I and Wiencke C (1998) Seasonal changes in C, N and major organic compounds and their significance to morphofunctional processes in the endemic Antarctic brown alga Ascoseira mirabilis. Polar Biol, 19: 115–124

    Google Scholar 

  • Gomez I, Thomas DN and Wiencke C (1995a) Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown alga Ascoseira mirabilis. Bot Mar 38: 157–164

    CAS  Google Scholar 

  • Gomez I, Wiencke C and Weykam G (1995b) Seasonal photosynthetic characteristics of Ascoseira mirabilis (Ascoseirales, Phaeophyceae) from King George Island, Antarctica. Mar Biol 123: 167–172

    CAS  Google Scholar 

  • Gomez I, Wiencke C and Thomas DN (1996) Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis Skottsberg in relation to thallus age and size. Eur J Phycol 31: 167–172

    Google Scholar 

  • Gomez I, Weykam G, Klöser H and Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148: 281–293

    Google Scholar 

  • Gómez I, Weykam G and Wiencke C (1998a) Photosynthetic metabolism and major organic compounds in the marine brown alga Desmarestia menziesii from King George Island (Antarctica) Aquat Bot 60: 105–118

    Google Scholar 

  • Gómez I, Wiencke C and Weykam G (1998b) Life strategy of Antarctic macroalgae. In: Wiencke C, Ferrcyra G, Arntz W and Rinaldi C (eds) The Potter Cove Coastal Ecosystem, Antarctica. Ber Polarforsch 299: 90–94

    Google Scholar 

  • Gorbunov MY, Falkowski PG and Kolber ZS (2000) Measurements of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition fluorometer. Limnol Occanogr 45: 242–245

    Google Scholar 

  • Greene RM and Gerard VA (1990) Effect of high-frequency light fluctuations on growth and photoacclimation of the red alga Chondrus crispus. Mar Biol 105: 337–344

    Google Scholar 

  • Guenther JE and Melis A (1990) The physiological significance of Photosystem II heterogeneity in chloroplasts. Photosynth Res 23: 105–109

    CAS  Google Scholar 

  • Guiry MD and Blunden G (1991) Seaweed Resources in Europe: Uses and Potential. John Wiley and Sons, Chichester, New York

    Google Scholar 

  • Häder DP and Figueroa FL (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol 66: 1–14

    Google Scholar 

  • Häder DP, Herrmann H, Schäfer J and Santas R (1996) Photosynthetic fluorescence induction and oxygen production in Corallinacean algae measured on site. Bot Acta 109: 285–291

    Google Scholar 

  • Häder DP, Lebert M, Flores A, Jimenez C, Mercado J, Salles S, Aguilera J and Figueroa FL (1997) Photosynthesis of the Atlantic red alga Corallina elongata Ellis et Soland measured in the field under solar radiation. J Photochem Photobiol B 37: 196–202

    Google Scholar 

  • Hanelt D (1992) Photoinhibition of photosynthesis in marine macrophytes of the South China Sea. Mar Ecol Prog Ser 82: 199–206

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131: 361–369

    Google Scholar 

  • Hanelt D and Nultsch W (1989) Action spectrum of phaeoplast displacement from the dark to the low intensity arrangement in the brown alga Dictyota dichotoma. J Photochem Photobiol B 4: 111–121

    CAS  Google Scholar 

  • Hanelt D and Nultsch W (1990) Daily changes of the phaeoplast arrangement in the brown alga Dictyota dichotoma as studied in field experiments. Mar Ecol Prog Ser 61: 273–279

    Google Scholar 

  • Hanelt D and Nultsch W (1991) The role of chromatophore arrangement in protecting the chromatophores of the brown alga Dictyota dichotoma against photodamage. J Plant Physiol 138: 470–475

    Google Scholar 

  • Hanelt D and Nultsch W (1995) Field studies of photoinhibition show non-correlations between oxygen and fluorescence measurements in the Arctic red alga Palmaria palmata. J Plant Physiol 145: 31–38

    CAS  Google Scholar 

  • Hanelt D and Nultsch W (2003) Photoinhibition in seaweeds. In: Heldmaier G and Werner D (eds) Environmental Signal Processing and Adaptation, pp 1414-167. Springer-Verlag, Berlin

    Google Scholar 

  • Hanelt D, Huppertz K and Nultsch W (1992) Photoinhibition of photosynthesis and its recovery in red algae. Bot Acta 105: 278–284

    Google Scholar 

  • Hanelt D, Huppertz K and Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97: 31–37

    Google Scholar 

  • Hanelt D, Li J and Nultsch W (1994) Tidal dependence of photoinhibition of photosynthesis in marine macrophytes of the South China Sea. Bot Acta 107: 66–72

    Google Scholar 

  • Hanelt D, Uhrmacher S and Nultsch W (1995) The effect of photoinhibition on photosynthetic oxygen production in the brown alga Dictyota dichotoma. Bot Acta 108: 99–105

    CAS  Google Scholar 

  • Hanelt D, Wiencke C and Nultsch W (1997a) Influence of UVradiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B 38: 40–47

    CAS  Google Scholar 

  • Hanelt D, Wiencke C, Karsten U and Nultsch W (1997b) Photoinhibition and recovery after high light stress in different developmental and life-history stages of Laminarla saccharina (Phaeophyta) J Phycol 33: 387–395

    Google Scholar 

  • Hanelt D, Melchersmarm B, Wiencke C and Nultsch W (1997c) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149: 255–266

    CAS  Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Karsten U and Wiencke C (2000) Light regime in an Arctic fjord: A study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138: 649–658

    Google Scholar 

  • Harder R and Bederke B (1957) Ober Wachstumsversuche mit Rot-und Grünalgen (Porphyridium cruentum, Traüliella intricata, Chlorella pyrenoidosa) in verschiedenfarbigem, energiegleichem Licht. Arch Mikrobiol 28: 153–172

    PubMed  CAS  Google Scholar 

  • Hatcher BG, Chapman ARO and Mann KA (1977) Annual carbon budget for the kelp Laminaria longicruris. Mar Biol 44: 85–96

    CAS  Google Scholar 

  • Haupt W and Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13: 595–614

    Google Scholar 

  • Haxo FT and Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389–442

    PubMed  CAS  Google Scholar 

  • Healey FP (1972) Photosynthesis and respiration in some Arctic seaweeds. Phycologia 11: 267–271

    Google Scholar 

  • Henley WJ, Levavasseur G, Franklin LA, Lindley ST, Ramus J and Osmond CB (1991) Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade outdoor culture. Mar Ecol Prog Ser 75: 19–28

    Google Scholar 

  • Henley WJ, Lindley ST, Levavasseur G, Osmond CB and Ramus J (1992) Photosynthetic response of Ulva rolundata to light and temperature during emersion on an intertidal sand flat. Oecologia 89: 516–523

    Google Scholar 

  • Hoek C van den, Breeman AM, Stam WT (1990) The geographic distribution of seaweed species in relation to temperature: Present and past. In: Beukema JJ et al. (eds) Expected Effects of Climate Change in Marine Coastal Ecosystems, pp 55-67. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Holm-Hansen O, Helbling EW and Lubin D (1993a) Ultraviolet radiation in Antarctica: Inhibition of primary production. Photochem Photobiol 58: 567–570

    CAS  Google Scholar 

  • Holm-Hansen O, Lubin D and Helbling EW (1993b) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J and Nultsch W (eds) Environmental UV Photobiology, pp 379-425. Plenum Press, New York

    Google Scholar 

  • Houghton JT, Jenkins GJ and Ephraums JJ (1990) Climate Change. The IPCC Scientific Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton JT, Callander BA and Varney SK (1992) The supplementary report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Huppertz K, Hanelt D and Nultsch W (1990) Photoinhibition of photosynthesis in the marine brown alga Fucus serratus as studied in field experiments. Mar Ecol Prog Ser 66: 175–182

    Google Scholar 

  • Israel AA, Friedlander M and Neori A (1995) Biomass yield, photosynthesis and morphological expression of Ulva lactuca. Bot Mar 38: 297–302

    Google Scholar 

  • Ito H and Kudoh S (1997) Characteristics of water in Kongsfjorden, Svalbard. Proc NIPR Symp Polar Mcteorol Glaciol 11: 211–232

    Google Scholar 

  • Jerlov NG (1976) Marine Optics. Elsevier, Amsterdam

    Google Scholar 

  • Jokela K, Leszczynski K and Visuri R (1993) Effects of Arctic ozone depletion and snow on UV exposure in Finland. Photochem Photobiol 58: 559–566

    PubMed  CAS  Google Scholar 

  • Jones LW and Kok B (1966) Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol 41: 1037–1043

    PubMed  CAS  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24: 203–215

    Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsuga N, Miyao M and Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829–832

    PubMed  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press

    Google Scholar 

  • Kirkman H (1997) Seagrasses of Australia. Australia: State of the Environment Technical Paper Series (Estuaries and the Sea), Department of the Environment, Canberra

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algac Annu Rev Plant Physiol Plant Mol Biol 41: 21–53

    CAS  Google Scholar 

  • Kirst GO and Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31: 181–199

    Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    CAS  Google Scholar 

  • Kubier JE and Davison IR (1995) Thermal acclimation of lightuse characteristics of Chondrus crispus (Rhodophyta). Eur J Phycol 30: 189–195

    Google Scholar 

  • Küppers U and Kremer BP (1978) Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. Plant Physiol 62: 49–53

    PubMed  Google Scholar 

  • Larkum AWD and Weyrauch SK (1977) Photosynthetic action spectra and light-harvesting in Griffithsia monilis (Rhodophyta). Photochem Photobiol 25: 65–72

    CAS  Google Scholar 

  • Larkum AWD and Wood WF (1993) The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth Res 36: 17–23

    CAS  Google Scholar 

  • Larkum AWD, Drew EA and Crossett RN (1967) The vertical distribution of attached marine algae in Malta. J Ecol 55: 361–371

    Google Scholar 

  • Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res 38: 143–167

    CAS  Google Scholar 

  • Lesser MP and Gorbunov MY (2001) Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Mar Ecol Prog Ser 212: 69–77

    CAS  Google Scholar 

  • Leukart P and Lüning K (1994) Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. Eur J Phycol 29: 103–112

    Google Scholar 

  • Littler MM and Arnold KE (1980) Primary productivity of marine macroalgal functional form groups from south-western North America. J Phycol 18: 307–311

    Google Scholar 

  • Littler MM, Littler DS, Blair SM and Norris JM (1986) Deep water plant communities from an uncharted seamount off San Salvador island, Bahamas: Distribution, abundance and primary productivity. Deep Sea Res 33: 881–892

    CAS  Google Scholar 

  • Lombardi MR, Lesser PL and Gorbunov MY (2000) Fast repetition (FRR) fluorometry: Variability of chlorophyll a fluorescence yields in colonies of the corals, Montastraea faveolata (w.) and Diploria labyrinthiformes (h.) recovering from bleaching. J Exp Mar Biol Ecol 252: 75–84

    PubMed  CAS  Google Scholar 

  • Lüder UH, Knoetzel J and Wiencke C (2001a) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol. 24: 598–603

    Google Scholar 

  • Lüder UH., Knoetzel J and Wiencke C. (2001b) Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae) Physiologia Plantarum 112: 572–581

    PubMed  Google Scholar 

  • Lüning K (1970) Tauchuntersuchungen zur Vertikalverbreitung der sublitoralen Helgoländer Algenvegetation. Helgol Wiss Meeresunters 21: 271–291

    Google Scholar 

  • Lüning K (1981) Light. In: Lobban CS and Wynne Mj (eds) The Biology of Seaweeds, pp 326-355. Blackwell, Oxford

    Google Scholar 

  • Lüning K (1985) Meeresbotanik. Georg Thieme Verlag, Stuttgart, Germany

    Google Scholar 

  • Lüning K (1990) Seaweeds: Their environment, Biogeography and Ecopysiology. Wiley, New York

    Google Scholar 

  • Machalek KM, Davison IR and Falkowski PG (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19: 1005–1016

    CAS  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO and Caldwell MM (1998) Changes in photobiologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B: Biol 46: 5–19

    CAS  Google Scholar 

  • Mattoo AK, Hoffman-Falk H, Marder JB and Edelman M (1984) Regulation of protein metabolism: Coupling of photosynthetic electron transport in vivo degradation of the rapidly metabolised 32-kilodalton protein of the chloroplast membranes. Proc Nat Acad Sci USA 81: 1380–1384

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Falk S, Trick CG and Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105: 535–543

    PubMed  CAS  Google Scholar 

  • Mehlum F (1991) Breeding population size of the common eider Somateria mollissima in Kongsfjorden, Svalbard, 1981-1987. Norsk Polarinstitutt Skrifter 195: 21–29

    Google Scholar 

  • Müller R, Crutzen PJ, Grooß JU, Brühl C, Rüssel JM, Gernandt H, Me Kenna DS and Tuck AF (1997) Severe ozone loss in the Arctic during the winter of, 1995-96. Nature 389: 709–712

    Google Scholar 

  • Neale PJ, Cullen JJ, Lesser MP and Melis A (1993) Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation. In: Yamamoto HY and Smith CM (eds) Photosynthetic Responses to the Environment, pp 61-77. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Norton TA, Melkonian M and Andersen RA (1996) Algal biodiversity. Phycologia 35: 308–326

    Google Scholar 

  • Nultsch W and Pfau J (1979) Occurrence and biological role of light-induced chromatophore displacements in seaweeds. Mar Biol 51: 77–82

    Google Scholar 

  • Nultsch W, Pfau J and Rüffer U (1981) Do correlations exist between chromatophore arrangements and photosynthetic activity in seaweeds? Mar Biol 62: 111–117

    Google Scholar 

  • Nultsch W, Pfau J, and Materna-Weide M (1987) Fluence and wavelength dependence of photoinhibition in the brown alga Dictyota dichotoma. Mar Ecol Prog Ser 41: 93–97

    Google Scholar 

  • Öquist G and Chow WS (1992) On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence, and the quantum yield of CO2-dependent O2 evolution. Photosynth Res 33: 51–62

    Google Scholar 

  • Osmond CB (1994) What is photo inhibition? Some insights from comparisons of shade and sun plants. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis, from the Molecular Mechanisms to the Field, pp 1-24. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Pakker H and Breeman AM (1996) Temperature responses of tropical to warm-temperate Atlantic seaweeds. II Evidence for ecotypic differentiation in amphi-Atlantic-Tropical-Mediterranean species. Eur J Phycol 31: 133–141

    Google Scholar 

  • Pakker H, Prudihomme van Reine WF and Breeman AM (1995) A comparative study of temperature responses of Caribbean seaweeds from different biogeographic groups. J Phycol 31: 497–507

    Google Scholar 

  • Pakker H, Breeman AM, Prudihomme van Reine WF, van Oppen MJH and van den Hoek C (1996) Temperature responses of tropical to warm-temperate Atlantic seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic-Tropical-Canary Islands species. Eur J Phycol 31: 497–515

    Google Scholar 

  • Park YI, Chow WS and Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia alhiflora helps protect Photosystem II against light stress. Plant Physiol 111: 867–875

    PubMed  CAS  Google Scholar 

  • Pfau J, Hanelt D and Nultsch W (1988) A new dual-beam microphotometer for determination of action spectra of lightinduced phaeoplast movements in Dictyota dichotoma. J Plant Physiol 133: 572–579

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35: 15–44

    CAS  Google Scholar 

  • Ramus J (1978) Seaweed anatomy and photosynthetic performance: The ecological significance of light guides, heterogeneous absorption and multiple scatter. J Phycol 14: 352–362

    Google Scholar 

  • Ramus J (1981) The capture and transduction of light energy. In: Lobban CS and Wynne MJ (eds) The Biology of Seaweeds, pp 458-492. University of California Press, Berkeley

    Google Scholar 

  • Ramus J and Rosenberg GBD (1980) Diurnal photosynthetic performance of seaweeds measured under natural conditions. Mar Biol 56: 21–28

    CAS  Google Scholar 

  • Rex M, Harris NRP, von der Gathen P, Lehmann R, Braathen GO, Reimer E, Beck A, Chipperfield MP, Alfier R, Allaart M, O’Connor F, Dier H, Dorokhov V, Fast H, Gil M, Kyrö E, Litynska Z, Mikkelsen IS, Molyneux MG, Nakane H, Notholt J, Rummukainen M, Viatte P and Wenger J (1997) Prolonged stratospheric ozone loss in the, 1995-96 Arctic winter. Nature 389: 835–838

    CAS  Google Scholar 

  • Ruban AV and Horton P (1994) Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Austral J Plant Physiol 22: 221–230

    Google Scholar 

  • Ruban AV, Andrew J and Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Plant Physiol 102: 741–750

    PubMed  CAS  Google Scholar 

  • Salles S, Aguilcra J and Figueroa FL (1996) Light field in algal canopies: Changes in spectral light ratios and growth of Porphyra leucosticta Thur. in Le Jol. Sci Mar 60: 29–38

    Google Scholar 

  • Schmid R and Dring MJ (1996) Blue light and carbon acquisition in brown algae: An overview and recent developments. Sci Mar 60: 115–124

    CAS  Google Scholar 

  • Schofield O, Evens TJ and Millie DF (1998) Photosystem II quantum yields and xanthophyll-cycle pigments of the macroalga Sargassumnatans (Phaeophyceae): Responses under natural sunlight. J Phycol 34: 104–112

    CAS  Google Scholar 

  • Schreiber U, Schliwa U and Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51–62

    CAS  Google Scholar 

  • Schreiber U, Gademann R, Ralph PJ and Larkum AWD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinumpatella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38: 945–951

    CAS  Google Scholar 

  • Senn G (1919) Weitere Untersuchungen über Gestalts—und Lageveränderungen der Chromatophoren. Z Bot 11: 81–141

    Google Scholar 

  • Setlow RB (1974) The wavelengths in solar radiation effective in producing skin cancer: A theoretical analysis. Proc Nat Acad Sci USA 71: 3363–3366

    PubMed  CAS  Google Scholar 

  • Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211: 838–840

    PubMed  CAS  Google Scholar 

  • Steemann Nielsen E (1975) Marine Photosynthesis. Elsevier, Amsterdam

    Google Scholar 

  • Stengel D and Dring M (1998) Seasonal variation in the pigment content and photosynthesis of different thallus regions of Ascophyllum nodosum (Fucales, Phaeophyta) in relation to position in the canopy. Phycologia 37: 259–268

    Google Scholar 

  • Thomas DN and Wiencke C (1991) Photosynthesis, dark respiration and light independent carbon fixation of endemic Antarctic macroalgae. Polar Biol 11: 329–337

    Google Scholar 

  • Uhrmacher S, Hanelt D and Nultsch W (1995) Zeaxanthin content and the photoinhibitory degree of photosynthesis are linearly correlated in the brown alga Dictyota dichotoma. Mar Biol 123: 159–165

    CAS  Google Scholar 

  • Vass I (1997) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 931-949. Marcel Dekker Inc. New York

    Google Scholar 

  • Vergara JJ, Pérez-Lloréns L, Peralta G, Hernandez I and Xavier Niell F (1997) Seasonal variation of photosynthetic performance and light attenuation of Ulva canopies from Palmones river estuary. J Phycol 33: 773–779

    Google Scholar 

  • Vincent WF, Rae R, Laurion I and Priscu JC (1998) Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnol Oceanogr 43: 618–624

    Google Scholar 

  • Weykam G and Wiencke C (1996) Seasonal photosynthetic performance of the endemic Antarctic red alga Palmaria decipiens (Reinsch) Ricker. Polar Biol 16: 357–361

    Google Scholar 

  • Weykam G, Gomez 1, Wiencke C, Iken K and Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica) J Exp Mar Biol Ecol 204: 1–22

    Google Scholar 

  • Weykam G, Thomas DN and Wiencke C (1997) Growth and photosynthesis of the Antarctic red alga Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia 36: 395–405

    Google Scholar 

  • Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylcngths. Polar Biol. 10: 589–600

    Google Scholar 

  • Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica—a long-term culture study under fluctuating Antarctic daylengths. Polar Biol. 10: 601–607

    Google Scholar 

  • Wiencke C and Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65: 283–292

    Google Scholar 

  • Wiencke C, Rahmel J, Karsten U, Weykam G and Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: Light and temperature requirements. Bot Acta 106: 77–87

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF and Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37: 247–259

    Google Scholar 

  • Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K and Lopez-Figueroa F (2000) Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: Implications for depth zonation. Mar Ecol Prog Ser, 197: 217–229

    Google Scholar 

  • Williams PJleb, Raine RCT and Bryan JR (1979) Agreement between 14C and oxygen methods of measuring phytoplankton production: Reassessment of the photosynthetic quotient. Oceanologica Acta 2: 411–416

    Google Scholar 

  • Williams Pjleb and Robertson JE (1991) Overall planktonic oxygen and carbon dioxide metabolisms: The problem of reconciling observations and calculations of photosynthetic quotients. J Plankton Res 13: 153–169

    Google Scholar 

  • Wood WF (1987) Effect of solar ultra-violet radiation on the kelp Ecklonia radiata. Mar Biol 96: 143–150

    Google Scholar 

  • Zurzycki J (1975) Adjustment processes of the photosynthetic apparatus to light conditions, their mechanism and biological significance. Pol Ecol Stud 1: 41–49

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanelt, D., Wiencke, C., Bischof, K. (2003). Photosynthesis in Marine Macroalgae. In: Larkum, A.W.D., Douglas, S.E., Raven, J.A. (eds) Photosynthesis in Algae. Advances in Photosynthesis and Respiration, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1038-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1038-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3772-3

  • Online ISBN: 978-94-007-1038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics