Scaling Laws for Fluxon Formation in Annular Josephson Tunnel Junctions

  • R. Monaco
  • R. J. Rivers
Conference paper
Part of the NATO Science Series book series (NAII, volume 127)


Although equilibrium, or adiabatic, correlation lengths ξ ad (T) diverge at the critical temperature T c of continuous phase transitions, correlation lengths always remain bounded, in practice. This is because causality prevents a system becoming ordered on very large scales within the finite time in which transitions are implemented. In consequence, the order parameter fields become frustrated, and defects arise to mediate between the different equivalent ground states of the system. By observing these defects we obtain a direct experimental guide to the way in which the transition has been implemented.


Thermal Cycle Correlation Length Critical Current Density Continuous Phase Transition Josephson Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T.W.B. Kibble, J. Phys. A9, 1387 (1976).ADSGoogle Scholar
  2. [2]
    T.W.B. Kibble, Physics Reports 67, 183 (1980).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    W.H. Zurek, Nature 317, 505 (1985), Acta Physica Polonica B24, 1301 (1993).ADSCrossRefGoogle Scholar
  4. [4]
    W.H. Zurek, Physics Reports 276, Number 4, Nov. 1996.Google Scholar
  5. [5]
    E. Kavoussanaki, R.J. Rivers and G. Karra, Cond. Matt. Phys. 3, 133 (2000).Google Scholar
  6. [6]
    R.J. Rivers, Journal of Low Temperature Physics 124, 41 (2001).CrossRefGoogle Scholar
  7. [7]
    V.M.H. Ruutu et al., Nature 382, 334 (1996).ADSCrossRefGoogle Scholar
  8. [8]
    C. Bauerle et al., Nature 382, 332 (1996).ADSCrossRefGoogle Scholar
  9. [9]
    P.C. Hendry et al, Nature 368, 315 (1994).ADSCrossRefGoogle Scholar
  10. [10]
    M.E. Dodd et al., Phys. Rev. Lett. 81, 3703 (1998), J. Low Temp. Physics 15, 89 (1999).ADSCrossRefGoogle Scholar
  11. [11]
    R. Carmi and E. Polturak, Phys. Rev. B 60, 7595 (1999).ADSGoogle Scholar
  12. [12]
    S. Casado, W. Gonzalez-Vinas, H. Mancini and S. Boccaletti, Phys. Rev. E63, 057301 (2001).ADSGoogle Scholar
  13. [13]
    S. Ducci, P.L. Ramazza, W. Gonzalez-Visas, and F.T. Arecchi, Phys. Rev. Lett. 83, 5210 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    N. Gronbech-Jensen, P. S. Lomdahl, M. R. Samuelsen, Phys. Lett. A154, 14 (1991).ADSCrossRefGoogle Scholar
  15. [15]
    J.C. Swihart, J. Appl. Phys., 32, 461 (1961).ADSCrossRefGoogle Scholar
  16. [16]
    A. Barone and G. Paterno’, Physics and Applications of the Josephson Effect, John Wiley & Sons, New York (1982).CrossRefGoogle Scholar
  17. [17]
    E. Kavoussanaki, R. Monaco and R.J. Rivers, Phys. Rev. Lett. 81, 3452 (2000).ADSCrossRefGoogle Scholar
  18. [18]
    R. Monaco, R.J. Rivers and E. Kavoussanaki, Journal of Low Temperature Physics 124, 85 (2001).CrossRefGoogle Scholar
  19. [19]
    R. Monaco, J. Mygind and R.J. Rivers, Phys. Rev. Lett. 89, 080603 (2002)ADSCrossRefGoogle Scholar
  20. [20]
    DJ. Thouless, Phys.Rev. 117, 1256 (1960).ADSCrossRefGoogle Scholar
  21. [21]
    R. Monaco, R. Cristiano, L. Frunzio, C. Nappi, J. Appl. Phys. 71, 1888–1892 (1992).ADSCrossRefGoogle Scholar
  22. [22]
    V.P. Koshelets, S.V. Shitov, A.V. Shchukin, L.V. Filippenko, I.L. Lapitskaya, and J. Mygind, IEEE Trans. Appl Supercond (1995).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. Monaco
    • 1
  • R. J. Rivers
    • 2
  1. 1.Istituto di Cibernetica del C.N.R, 1-80078, Pozzuoli (Na), and INFM-Dipartimento di FisicaUniversita’ di SalernoBaronissi (Sa)Italy
  2. 2.Blackett LaboratoryImperial CollegeLondonCanada

Personalised recommendations