Cosmic Defects and Particle Physics Constraints

  • A. C. Davis
Conference paper
Part of the NATO Science Series book series (NAII, volume 127)


Topological defects, and in particular cosmic strings, are natural consequences of phase transitions in the early universe [1, 2, 3]. If detected they could provide windows into physics at very early times and very high energy, giving important information both for particle physics and cosmology. For most cosmological studies the abelian Higgs model is used as a prototypical cosmic string theory. However, in realistic particle physics theories the situation is more complicated and the resulting cosmic strings can have a rich microstructure. Additional features can be acquired at the string core at each subsequent symmetry breaking. This additional microstructure can, in some cases, be used to constrain the underlying particle physics theory to ensure consistency with standard cosmology. For example, if fermions couple to the Higgs field which gives rise to the string then these fermions could become zero modes (zero energy solutions of the Dirac equation) in the string core. The existence of fermion zero modes in the string core can have dramatic consequences for the properties of cosmic strings. For example, the zero modes can be excited and will move up or down the string, depending on whether they are left- or rightmovers. This will result in the string carrying a current [4]. An intially weak current on a string loop will be amplified as the loop contracts and could become sufficiently strong and prevent the string loop from decaying. In this case a stable loop or vorton [5] is produced. The density of vortons is tightly constrained by cosmology. For example, if vortons are sufficiently stable so that they survive until the present time then we require that the universe is not vorton dominated. However, if vortons only survive a few minutes then they can still have cosmological implications. We then require that the universe be radiation dominated at nucleosynthesis. These requirements have been used in [6, 7] to constrain such models.


Yukawa Coupling Zero Mode Supersymmetry Breaking Cosmic String Topological Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects (Cambridge Univ. Press, Cambridge, 1994).zbMATHGoogle Scholar
  2. [2]
    M. Hindmarsh and T.W.B. Kibble, Rept Prog Phys 58 477 (1995)MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    T. W. Kibble, Acta Phys Polon B 13, 723 (1982).ADSGoogle Scholar
  4. [4]
    E. Witten, Nucl. Phys. B 249, 557 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    R.L. Davis and E.P.S. Shellard, Nucl. Phys. B 323, 209 (1989), R.L. Davis, Phys. Rev. D 38, 3722 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    R. Brandenberger, B. Carter, A.C. Davis and M. Trodden, Phys. Rev. D 54, 6059 (1996).ADSCrossRefGoogle Scholar
  7. [7]
    B. Carter and A. C. Davis, Phys. Rev. D 61, 123501 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    B. Carter and X. Martin, Ann. Phys. 227, 151 (1993), X. Martin and P. Peter, Phys. Rev. D 51, 4092 (1995).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    R.L. Davis, Phys. Rev. D 38, 3722 (1988).ADSCrossRefGoogle Scholar
  10. [10]
    J.J. Blanco-Pillado, K. Olum and A. Vilenkin, Phys. Rev. D 66, 023506 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    S.C. Davis, A.C. Davis and W.B. Perkins, Phys. Rev. D 62, 043503 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    S.C. Davis, A.C. Davis and M. Trodden, Phys. Lett. B 405, 257 (1997).MathSciNetGoogle Scholar
  13. [13]
    S.C. Davis, A.C. Davis and M. Trodden, Phys. Rev. D 57, 5184 (1998).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    P. Fayet and J. Iliopoulos, Phys. Lett. B 51, 461 (1974).Google Scholar
  15. [15]
    T.W.B. Kibble, these proceedingsGoogle Scholar
  16. [16]
    M. Sakellariadou, these proceedingsGoogle Scholar
  17. [17]
    A. Achucarro, A.C. Davis, M. Pickles and J. Urrestilla, hep-th/0212125.Google Scholar
  18. [18]
    K. Dimopoulos and A. C. Davis, Phys. Rev. D 57, 692 (1998), Phys. Lett. B 446, 238 (1999), B. Carter, R. H. Brandenberger, A. C. Davis and G. Sigl, JHEP 0011, 019 (2000).ADSCrossRefGoogle Scholar
  19. [19]
    C.J.A.P. Martins and E.P.S. Shellard, Phys. Rev. D 57, 7155 (1998).ADSCrossRefGoogle Scholar
  20. [20]
    Y. Lemperiere and E.P.S. Shellard, Nucl. Phys. B 649, 511 (2003).ADSzbMATHCrossRefGoogle Scholar
  21. [21]
    B. Carter, Phys. Lett. B 238, 166 (1990).MathSciNetGoogle Scholar
  22. [22]
    P. Fayet, Nuovo Cimento A 31, 626 (1976).ADSCrossRefGoogle Scholar
  23. [23]
    H. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).ADSCrossRefGoogle Scholar
  24. [24]
    A. Achacarro, these proceedings.Google Scholar
  25. [25]
    S.C. Davis, A.C. Davis and W.B. Perkins, Phys. Lett. B 408, 81 (1997).Google Scholar
  26. [26]
    D. Fixsen et al., Astrophys. J. 473, 576 (1996).ADSCrossRefGoogle Scholar
  27. [27]
    E.L. White et al., Astrophys. J. 420, 450 (1994).ADSCrossRefGoogle Scholar
  28. [28]
    T. Vachaspati and A. Achncarro, Phys. Rev. D 44, 3067 (1991).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    R.H. Brandenberger, B. Carter and A.C. Davis, Phys. Lett. B 534, 1 (2002).Google Scholar
  30. [30]
    M. Nagasawa and R. H. Brandenberger, Phys. Lett. B 467, 205 (1999).Google Scholar
  31. [31]
    B. Carter, R. H. Brandenberger and A. C. Davis, Phys. Rev. D 65, 103520 (2002).CrossRefGoogle Scholar
  32. [32]
    M. Axenides and L. Perivolaropoulos, Phys. Rev. D 56, 1973 (1997).ADSCrossRefGoogle Scholar
  33. [33]
    M. Axenides, L. Perivolaropoulos and M. Trodden, Phys. Rev. D 58, 083505 (1998).CrossRefGoogle Scholar
  34. [34]
    T. Damour and A. Vilenkin, Phys. Rev. Lett, bf 78, 2288 (1997).Google Scholar
  35. [35]
    M. Peloso and L. Sorbo, Nucl. Phys. B 649, 88 (2003).MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    P. Binetruy, C. Deffayet and P. Peter, Phys. Lett. B 441, 52 (1998).Google Scholar
  37. [37]
    G. Volovik, Exotic Properties of Superfluid He3 (World Scientific, 1992).Google Scholar
  38. [38]
    W. B. Perkins and A. C. Davis, Phys. Lett. B 428, 254 (1998).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • A. C. Davis
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCMS, University of CambridgeWilberforce Road, CambridgeUK

Personalised recommendations