Advertisement

Unconventional Properties of TTF-Based Organic Magnetic Conductors

  • Toshiaki Enoki
  • Masashi Aimatsu
  • Hisashi Yamazaki
  • Kazuki Okabe
  • Junichi Nishijo
  • Kengo Enomoto
  • Akira Miyazaki
  • Kouhei Ugawa
  • Eiji Ogura
  • Yoshiyuki Kuwatani
  • Masahiko Iyoda
  • Oleg Naumenko
  • Yuri V. Sushko
Conference paper
Part of the NATO Science Series book series (NAII, volume 139)

Abstract

Unconventional magnetic properties of various TTF-based π-d interaction systems are presented. (D)2FeBr4 (D=DMET, EDTDM) are quasi-2D metals consisting of alternating stacking of donor π-electron conducting sheets and square lattice d-spins of FeBr4 - anion sheets. The magnetoresistance is strongly affected by changes of Fe3+ spin arrangement in the ordered state. Especially, for (EDTDM)2FeBr4, a large negative magnetoresistance appears in the vicinity of an MI transition. In (EDO-TTFBr2)2FeX4 (X=C1, Br) having similar sandwich structure to (D)2FeBr4, the presence of the Br atom of the donor bonded semicovalently to X atom of FeX4 - gives strong π-d interaction, which produces a strong correlation between the electron transport and magnetism in addition to a high Néel temperature with a complicated spin structure. (EDO- TTFI2)M(mnt)2 (M=Ni, Pt) are featured by a combination of 1D metal of EDO-TTFI2 columns and 1D ferromagnetic chain of M(mnt)2. For M=Pt, weak AF inter-chain interaction brings about a metamagnetic feature. The application of pressure enhances ferromagnetic features with an anomalous hysteretic hump.

Keywords

Easy Axis Localize Magnetic Moment Spin Density Wave Central Metal Atom Magnetic Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Enoki, J. Yamaura, and A. Miyazaki, Bull. Chem. Soc. Jpn. 70, 2005 (1997).CrossRefGoogle Scholar
  2. 2.
    H. Kobayashi, A. Kobayashi, and P. Cassoux, Chem. Soc. Rev. 29, 325 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H. Tanaka, and H. Kobayashi, Nature 410, 908 (2001).CrossRefGoogle Scholar
  4. 4.
    E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-García, and V.N. Laukhin, Nature 408, 447 (2000).CrossRefGoogle Scholar
  5. 5.
    A. Miyazaki, K. Enomoto, K. Okabe, H. Yamazaki, J. Nishijo, T. Enoki, E. Ogura, K. Ugawa, Y. Kuwatani, and M. Iyoda, J. Solid State Chem. 168, 547 (2002).CrossRefGoogle Scholar
  6. 6.
    L. Brossard, R. Clerc, C. Coulon, M. Tokumoto, T. Ziman, D. K. Pertov, V. N. Laukhin, M. J. Naughton, A. Audouard, F. Goze, A. Kobayashi, H. Kobayashi, and P. Cassoux, Eur. Phys. J. B1, 439 (1998).Google Scholar
  7. 7.
    K. Kanoda, Hyperfme Interact. 104, 235 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Mazumdar, R. T. Clay, and D. K. Cambell, (1234) Phys. Rev. B 62, 13400 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).Google Scholar
  10. 10.
    J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).CrossRefGoogle Scholar
  11. U.K. Enomoto, A. Miyazaki, and T. Enoki, Synth. Metals 120, 977 (2001).CrossRefGoogle Scholar
  12. 12.
    K. Okabe, K. Enomoto, A. Miyazaki, and T. Enoki, Mol. Cryst. Liq. Cryst. 376, 513 (2000).CrossRefGoogle Scholar
  13. 13.
    K. Enomoto, A. Miyazaki, and T. Enoki, Bull. Chem. Soc. Jpn. 76, 945 (2003).CrossRefGoogle Scholar
  14. 14.
    K. Miyagawa, and K. Kanoda, private communication.Google Scholar
  15. 15.
    K. Sugihara, J. Phys. Soc. Jpn. 62, 624 (1993).CrossRefGoogle Scholar
  16. 16.
    K. Okabe, A. Miyazaki, and T. Enoki, Synth. Metals, 135, 693 (2003).CrossRefGoogle Scholar
  17. 17.
    T. Enoki, H. Yamazaki, K. Okabe, K. Enomoto, T. Kato, A. Miyazaki, E. Ogura, Y. Kuwatani, M. Iyoda,Synth. Metals, 133,501(2003).Google Scholar
  18. 18.
    T. Imakubo, H. Sawa, and R. Kato, J. Chem. Soc. Chem. Commun. 1097, 1667 (1995).CrossRefGoogle Scholar
  19. 19.
    M. Iyoda, H. Suzuki, S. Sasaki, H. Yoshino, K. Kikuchi, K. Saito, I. Ikemoto, H. Matsuyama, and T. Mori, J. Mater. Chem. 6, 501 (1996).CrossRefGoogle Scholar
  20. 20.
    J. Nishijo, A. Miyazaki, T. Enoki, E. Ogura, T. Takano, Y. Kuwatani, M. Iyoda, and J. Yamaura, Solid State Commun. 116, 661 (2000).CrossRefGoogle Scholar
  21. 21.
    H. M. McConnell, J. Chem. Phys. 39, 253 (1963).CrossRefGoogle Scholar
  22. 22.
    J. Nishijo, E. Ogura, J. Yamaura, A. Miyazaki, T. Enoki, T. Takano, Y. Kuwatani, and M. Iyoda, Synth. Metals 133, 539 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Toshiaki Enoki
    • 1
  • Masashi Aimatsu
    • 1
  • Hisashi Yamazaki
    • 1
  • Kazuki Okabe
    • 1
  • Junichi Nishijo
  • Kengo Enomoto
    • 1
  • Akira Miyazaki
    • 1
  • Kouhei Ugawa
    • 2
  • Eiji Ogura
    • 2
  • Yoshiyuki Kuwatani
    • 2
  • Masahiko Iyoda
    • 2
  • Oleg Naumenko
    • 3
  • Yuri V. Sushko
    • 3
  1. 1.Department of ChemistryTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of ChemistryTokyo Metropolitan UniversityTokyoJapan
  3. 3.Department of Physics and AstronomyUniversity of KentuckyLexingtonUSA

Personalised recommendations