Advertisement

The Role of Organic Conductors in a World of Nanoscience

  • Urs Geiser
  • Hau H. Wang
  • Catherine Y. Han
  • Gerold A. Willing
Conference paper
Part of the NATO Science Series book series (NAII, volume 139)

Abstract

Nanoscience, i.e., the study of assemblies from the submicroscopic (in the optical spectrum) to the molecular length scale, is one of the most pervasive topics in current materials chemistry and physics research, with interdisciplinary potential from biology to engineering. Nanoscience opportunities for molecular conductors research exists especially in the area of patterned conducting films, which could eventually lead to molecular electronics applications. Our work has focussed on the fabrication of micro-and nanocrystalline films of BEDT-TTF and their conducting salts on noble micro-and substrates, where the crystallization was forced to follow previously deposited nanoscale patterns of specially derivatized thiols. These patterns were produced either by the dip-pen nanolithography or micro-contact printing techniques. In preparation for the advent of new focussed synchrotron beam lines with 10-20 nm spot sizes, we have mapped the sulfur Kα fluorescence emitted by the patterned BEDT-TTF films. The sulfur fluorescence distribution is a sensitive tool to assess the quality of the deposited patterns.

Keywords

Atomic Force Microscopy Diblock Copolymer Organic Conductor Advance Photon Source Molecular Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stauff, J. (1960) Kolloidchemie, Springer-Verlag, Berlin, Göttingen, Heidelberg.CrossRefGoogle Scholar
  2. 2.
    Jirgensons, B. and Straumanis, M.E. (1962)A Short Textbook of Colloid Chemistry, 2nd ed., The MacMillan Company, New York.Google Scholar
  3. 3.
    U.S. Department of Energy (2003) Nanoscale Science, Engineering, and Technology in the Office of Basic Energy Sciences (BES) of the U.S. Department of Energy (DOE) -Research Directions and Nanoscale Science Research Centers. Report available on the WWW athttp://www.sc.doe.gov/production/bes/NSET_NSRC_brochure_FEB03.pdf
  4. 4.
    Raymo, F.M. and Stoddart. J.F. (2001). Switchable Catenanes and Molecular Shuttles, in Feringa, B.L. (ed.), Molecular Switches. Wiley-VCH, Weinheim, pp. 219–248.CrossRefGoogle Scholar
  5. 5.
    Urban, V., Wang, H.H., Thiyagarajan, P., Littrell, K.C., Wang, H.B.; Yu, L. (2000) Self-organization of OPV-PEG diblock copolymers in THF/water. J. Appl. Crystallogr. 33, 645–649.CrossRefGoogle Scholar
  6. 6.
    Kawabata, K., Tanaka, K., and Mizutani, M. (1991) Superconducting Organic Thin Films Prepared using an Evaporation Method Adv. Mater., 3, 157–159.CrossRefGoogle Scholar
  7. 7.
    Hillier, A.C., Maxson, J.B., and Ward, M.D. (1994) Electrocrystallization of an Ordered Organic Monolayer: Selective Epitaxial Growth of p-(ET)2I3 on Graphite. Chem. Mater., 6, 2222–2226.CrossRefGoogle Scholar
  8. 8.
    Wang, H.H., Stamm, K.L., Parakka, J.P., and Han, C.Y. (2002) (BEDT-TTF)2PF6 Thin Films - A New Approach to the Preparation of Films From Charge-Transfer Salts, Adv. Mater. 14, 1193–1196.CrossRefGoogle Scholar
  9. 9.
    Bu, X., Cisarova, I., and Coppens, P. (1992) Structure of 8-(BEDT-TTF)PF6. Acta Crystallogr., C48, 1558–1560.Google Scholar
  10. 10.
    Bu, X., Cisarova, I., and Coppens, P. (1992) Structure of ε-(BEDT-TTF)PF6. Acta Crystallogr., C48, 1562–1563.Google Scholar
  11. 11.
    Liu, H.-L., Chou, L.-K., Abboud, K.A., Ward, B.H., Fanucci, G.E., Granroth, G.E., Canadell, E., Meisel, M.W., Talham, D.R., and Tanner, D.B. (1997) Structure and Physical Properties of a New 1:1 Cation- Radical Salt, ζ-(BEDT-TTF)PF6. Chem. Mater., 9, 1865–1877.CrossRefGoogle Scholar
  12. 12.
    Chou, L.-K., Quijada, M.A., Clevenger, M.B., de Oliveira, G.F., Abboud, K.A., Tanner, D.B., and Talham, D.R. (1995) Dication Salts of the Organic Donor Bis(ethylenedithio)tetrathiafulvalene. Chem. Mater., 7, 530–534.CrossRefGoogle Scholar
  13. 13.
    Kobayashi, H., Mori, T., Kato, R., Kobayashi, A., Sasaki, Y., Saito, G., and Inokuchi, H. (1983) Transverse Conduction and Metal-Insulator Transition in P-(BEDT-TTF)2PF6. Chem. Lett., 581–584.Google Scholar
  14. 14.
    Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, CA. (1999) “Dip-Pen” Nanolithography. Science, 283, 661–663.CrossRefGoogle Scholar
  15. 15.
    Kumar, A., Biebuyck, H.A., and Whitesides, G.M. (1994) Patterning Self-Assembled Monolayers: Applications in Materials Science. Langmuir, 10, 1498–1511.CrossRefGoogle Scholar
  16. 16.
    Wang, H.H., Han, CY., Noh, D.-Y., Shin, K.-S., Willing, G.A., and Geiser, U. (2003) Thin Films and Surface Patterning with BEDT-TTF Based Charge Transfer Salts, Synth. Met. 137, 1201–1202.CrossRefGoogle Scholar
  17. 17.
    Noh, D.-Y., Han, CY., Shin, K.-S., Willing, G.A., Geiser, U., and Wang, H.H. (manuscript in preparation) Patterned Surface Crystallization of BEDT-TTF with Dodecanethiol Derivatized Electron Donor Molecules.Google Scholar
  18. 18.
    McNulty, I., Paterson, D., Arko, J., Erdmann, M., Frigo, S.P., Goetze, K., Ilinski, P., Krapf, N., Mooney, T., Retsch, C.C., Stampfl, A.P.J., Vogt, S., Wang, Y., and Xu, S. (2003) The 2-ID-B Intermediate- Energy Scanning X-ray Microscope at the APS. Proceedings of the 7th Conference on X-ray Microscopy, July 29 - August 2, Grenoble. J. de Physique (in press).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Urs Geiser
    • 1
  • Hau H. Wang
    • 1
  • Catherine Y. Han
    • 1
  • Gerold A. Willing
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations