Dissipation In Josephson Qubits

  • Yuriy Makhlin
  • Gerd Schön
  • Alexander Shnirman
Part of the NATO Science Series book series (NAII, volume 125)


Josephson-junction systems have been studied as potential realizations of quantum bits. For their operation as qubits it is crucial to maintain quantum phase coherence for long times. Frequently relaxation and dephasing effects are described in the frame of the Bloch equations. Recent experiments demonstrate the importance of 1/f noise, or operate at points where the linear coupling to noise sources is suppressed. This requires generalizations and extensions of known methods and results. In this tutorial we present the Hamiltonian for Josephson qubits in a dissipative environment and review the derivation of the Bloch equations as well as systematic generalizations. We discuss 1/f noise, nonlinear coupling to the noise source, and effects of strong pulses on the dissipative dynamics. The examples illustrate the renormalization of qubit parameters by the high-frequency noise spectrum as well as non-exponential decay governed by low-frequency modes.


Density Matrix Noise Source Bloch Equation Dissipative Dynamic Strong Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch, F.: 1946, ‘Nuclear Induction’.Phys. Rev. 70, 460.Google Scholar
  2. Bloch, F.: 1957, ’Generalized Theory of Relaxation’. Phys. Rev. 105, 1206.Google Scholar
  3. Caldeira, A. O. and A. J. Leggett: 1983, ‘Quantum tunnelling in a dissipative system’. Ann. Phys. (NY) 149, 374.Google Scholar
  4. Chiorescu, I., Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij: 2003, ‘Coherent Quantum Dynamics of a Superconducting Flux Qubit’. Science 299, 1869.Google Scholar
  5. Cottet, A., A. Steinbach, P. Joyez, D. Vion, H. Pothier, and M. E. Huber: 2001, ’superconducting Electrometer for Measuring the Single Cooper Pair Box’. In: D. V. AverinGoogle Scholar
  6. 1.
    B. Ruggiero, and P. Silvestrini (eds.): Macroscopic Quantum Coherence and Quantum Computing. New York, p. 111, Kluwer Academic/Plenum Publ.Google Scholar
  7. DiVincenzo, D.: 1997, ‘Topics in Quantum Computers’. In: L. Kouwenhoven, PedG. Schön, and L. Sohn (eds.): Mesoscopic Electron Transport, Vol. 345 of NATO ASI Series E: Applied Sciences. Dordrecht, p. 657, Kluwer Ac. Publ.Google Scholar
  8. Fazio, R., G. M. Palma, and J. Siewert: 1999, ‘Fidelity and leakage of Josephson qubits’. Phys. Rev. Lett. 83, 5385.Google Scholar
  9. Ingold, G.-L. and Y. V. Nazarov: 1992, ‘Charge Tunneling Rates in Ultrasmall Junctions’. InGoogle Scholar
  10. Leggett, A. J., S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger: 1987, ‘Dynamics of the dissipative two-state system’. Rev. Mod. Phys. 59, 1.Google Scholar
  11. Misra, B. and E. Sudarshan: 1977, ‘The Zeno’s Paradox in quantum theory’. J. Math. Phys. 18, 756.Google Scholar
  12. Nakamura, Y., Yu. A. Pashkin, and J. S.Tsai: 1999, ‘Coherent control of macroscopic quantum states in a single-Cooper-pair box’. Nature 398, 786.Google Scholar
  13. Nakamura, Y., Yu. A. Pashkin, T. Yamamoto, and J. S. Tsai: 2002, ‘Charge echo in a Cooperpair box’. Phys. Rev. Lett. 88, 047901.Google Scholar
  14. Paladino, E., F. Taddei, G. Giaquinta, and G. Falci: 2003, ‘Josephson nanocircuit in the presense of linear quantum noise’. cond-mat/0301363.Google Scholar
  15. Redfield, A. G.: 1957, ‘On the Theory of Relaxation Processes’. IBM J. Res. Dev. 1, 19.Google Scholar
  16. Schoeller, H. and G. Schön: 1994, ‘Mesoscopic quantum transport: resonant tunneling in the presence of strong Coulomb interaction’. Phys. Rev. B 50, 18436.Google Scholar
  17. Shnirman, A., Y. Makhlin, and G. Schön: 2002, ‘Noise and Decoherence in Quantum Two-Level Systems’. Physica Scripta T102, 147.Google Scholar
  18. Vion, D., A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret: 2002, ‘Manipulating the quantum state of an electrical circuit’. Science 296, 886.Google Scholar
  19. Wangsness, R. K. and F. Bloch: 1953, ‘The Dynamical Theory of Nuclear Induction’. Phys. Rev. 89,728.Google Scholar
  20. Weiss, U.: 1999, Quantum dissipative systems. Singapore: World Scientific, 2nd edition.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Yuriy Makhlin
    • 1
    • 2
  • Gerd Schön
    • 1
    • 3
  • Alexander Shnirman
    • 1
  1. 1.Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruhe
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Forschungszentrum KarlsruheInstitut für NanotechnologieKarlsruheGermany

Personalised recommendations