Advertisement

Superconducting quantum bit based on the Cooper pair box

  • D. Vion
  • A. Aassime
  • A. Cottet
  • P. Joyez
  • H. Pothier
  • C. Urbina
  • D. Esteve
  • M. H. Devoret
Part of the NATO Science Series book series (NAII, volume 125)

Abstract

The more advanced proposals so far for the implementation of qubits and quantum gates for quantum computation[1] are based on ions or atoms in vacuum [2, 3]. These systems have been manipulated individually in a controlled fashion for about 20 years and techniques have reached a high level of sophistication. However, it is not clear yet if these proposals can be extended to the fabrication of a quantum processor which would be “scalable”, a jargon term referring to the situation where fabrication costs scale sufficiently ”gently” with the number of quantum bits and gates that quantum computation can overpower its classical counterpart.

Keywords

Josephson Junction Cooper Pair Tunnel Junction Microwave Pulse Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. DiVincenzo, ”Quantum gates and circuits,” Proc. R. Soc. Lond. A 454, 261–76 (1998)Google Scholar
  2. 2.
    D. Bouwmeester, A. Ekert, and A. Zeilinger, (Eds) ”The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation” (Springer Verlag, Berlin, 2000)Google Scholar
  3. 3.
    J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    M.F Bocko, A. M. Herr and M.F. Feldman, IEEE Trans. Applied Supercond. 7, 3638–3641(1997)CrossRefGoogle Scholar
  5. 5.
    B. E. Kane, Nature 393, 133–137 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    D. Loss and D.P. DiVincenzo, Phys. Rev. A 57,120–126 (1998)ADSGoogle Scholar
  7. 7.
    Yu. Makhlin, G. Schoen and A. Shnirman, Nature 398, 786–789 (1999); Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).Google Scholar
  8. 8.
    Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature 398, 786–788 (1999); Phys. Rev. Lett. 87, 246601 (2001); ibid. to be published [cond-mat/0111402].ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Mooij, et al., Science 285, 1036 (1999); Caspar H. van der Wal et al., Science 290, 773 (2000).CrossRefGoogle Scholar
  10. 10.
    Siyuan-Han, R. Rouse, J. E. Lukens, Phys. Rev. Lett. 84, 1300 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    B.E. Kane, N.S. McAlpine, A.S. Dzurak, R.G. Clark, G.J. Milburn, He Be Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000)ADSGoogle Scholar
  12. 12.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 286–280 (2002)CrossRefGoogle Scholar
  13. 13.
    Y. Yu, S. Han, Xi Chu, S. Chu and Z. Wang, Science 296, 889 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M.H. Devoret, Nature 365, 422 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    K.K. Likharev, “Dynamics of Josephson junctions and Circuits” (Gordon and Breach, New York, 1986).Google Scholar
  18. 18.
    M. Büttiker, Phys. Rev. B 36, 3548 (1987).ADSGoogle Scholar
  19. 19.
    V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Phys. Scr. T76, 165–170 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    W. H. Zurek, Physics Today 44, 36 (1991); W. H. Zurek and J. P. Paz, in Coherent atomic matter waves, edited by R. Kaiser, C. Westbrook and F. David, (Springer-Verlag Heidelberg 2000) [quant-ph/0010011].CrossRefGoogle Scholar
  21. 21.
    J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682–4698 (1987);M. H. Devoret, D. Esteve, C. Urbina, J. M. Martinis, A. N. Cleland, and J. Clarke, in Quantum Tunneling in Condensed Media edited by Y. Kagan and A.J. Leggett (Elsevier Science Publishers, 1992).ADSGoogle Scholar
  22. 22.
    Another two-port design has been proposed by A. B. Zorin (cond-mat/0112351; to be published in Physica C)Google Scholar
  23. 23.
    A. Abragam, The principles of nuclear magnetism (Oxford University Press, 1961).Google Scholar
  24. 24.
    A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86,3376 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).Google Scholar
  26. 26.
    Adifferent Cooper pair box readout scheme using a large Josephson junction is discussed by F._W. J. Hekking, O. Buisson, F. Balestro, and M. G. Vergniory, in Electronic Correlations: from Meso-to Nanophysics, T. Martin, G. Montambaux and J. Trân Thanh Vân, eds. (EDPSciences, 2001), p. 515.Google Scholar
  27. 27.
    A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, M.H Devoret., Physica C367, 197 (2002)ADSGoogle Scholar
  28. 28.
    G. J. Dolan and J. H. Dunsmuir, Physica B152, 7 (1988).ADSGoogle Scholar
  29. 29.
    A. Cottet, A. H. Steinbach, P. Joyez, D. Vion, H. Pothier, D. Esteve, and M. E. Huber, in Macroscopic quantum coherence and quantum computing, edited by D. V. Averin, B. Ruggiero, and P. Silvestrini, Kluwer Academic, Plenum publishers, New-York, 2001, p. 111–125.CrossRefGoogle Scholar
  30. 30.
    I. I. Rabi, Phys. Rev. 51, 652 (1937).ADSCrossRefGoogle Scholar
  31. 31.
    N. F. Ramsey, Phys. Rev. 78, 695 (1950).ADSCrossRefGoogle Scholar
  32. 32.
    In practice, the rotation axis does not need to be x, but the rotation angle of the two pulses is always adjusted so as to bring a spin initially along z into a plane perpendicular to z.Google Scholar
  33. 33.
    At fixed Δt, the switching probability displays a decaying oscillation as a function of detuning, the maximum corresponding to zero detuning.Google Scholar
  34. 34.
    H. Wolf, F.-J. Ahlers, J. Niemeyer, H. Scherer, Th. Weimann, A. B. Zorin, V. A. Krupenin, S. V. Lotkhov, D. E. Presnov, IEEE Trans. on Instrum. and Measurement 46, 303 (1997).CrossRefGoogle Scholar
  35. 35.
    F. C. Wellstood, C. Urbina, and J. Clarke, Appl. Phys. Lett. 50, 772–774 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    Critical current noise [B. Savo, F. C. Wellstood, and J. Clarke, Appl. Phys. Lett. 50, 1758-1760 (1987)] seems to be of a lesser concern since none of our results forces us to invoke it.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • D. Vion
    • 1
  • A. Aassime
    • 1
  • A. Cottet
    • 1
  • P. Joyez
    • 1
  • H. Pothier
    • 1
  • C. Urbina
    • 1
  • D. Esteve
    • 1
  • M. H. Devoret
    • 1
  1. 1.Quantronics GroupService de Physique de l’Etat CondenséGif-sur-Yvette cedexFrance

Personalised recommendations