Phase measurements in Quantum Dots

  • Alessandro Silva
  • Moty Heiblum
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)

Abstract

Recent measurements of the phase of the transmission amplitude through a quantum dot (QD) revealed interesting and unexpected physics. In particular, the phase evolution across a sequence of Coulomb Blockade (CB) peaks is demonstrated to have a peculiar structure, characterized by an increase of π across each peak, followed by an abrupt phase lapse of π in each CB valley. A simple theory accounting for the origin of such phase lapses as well as for their small scale is discussed, though a satisfactory explanation of the presence of a phase lapse in each CB valley is still lacking. As the temperature of the system is reduced, the Kondo effect develops in CB valleys with non-zero QD spin (Kondo valleys). The measured phase evolution in this regime is characterized by a plateau at π in the valley, and a total increment of the phase close to 2π across the CB peak-Kondo valley-CB peak structure. This result contrast quantitatively with the theoretical prediction for the phase evolution based on the Anderson model, i.e. a plateau at π/2 in the Kondo valley and a total increment of π.

Keywords

Phase Measurement Anderson Model Coulomb Blockade Transmission Amplitude Transmission Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aharonov and D. Bohm, Phys. Rev. 115 485 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    N. Bohr, Discussion with Einstein on Epistemological Problems in Atomic Physics,in Albert Einstein: Philosopher — Scientist (Ed. P. A. Schilpp) 200–241 (Library of Living Philosophers, Evanston, 1949).Google Scholar
  3. 3.
    E. Buks, R. Schuster, M. Heiblum, D. Mahalu and V. Umansky, Nature 391 871 (1998);D. Sprinzak, E. Buks, M. Heiblum, H. Shtrikman, Phys. Rev. Lett. 84, 5820 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and H. Shtrikman, Nature 385, 417 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    Yang Ji, M. Heiblum, D. Sprinzak, D. Mahalu, H. Shtrikman, Science 290, 779 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    Yang Ji, M. Heiblum, H. Shtrikman, Phys. Rev. Lett. 88 076601 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    Alessandro Silva, Yuval Oreg, and Yuval Gefen, Phys. Rev.B 66, 195316 (2002).ADSGoogle Scholar
  9. 9.
    L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, in Mesoscopic Electron Transport, edited byL. L. Sohn, L. P. Kouwenhoven, and G. Schon (Kluwer, Dordrecht, 1997).Google Scholar
  10. 10.
    Y. Alhassid, Rev. Mod. Phys. 69, 731 (1997).CrossRefGoogle Scholar
  11. 11.
    I. L. Aleiner, P. W. Brouwer, I. L. Glazman, Phys. Rep. 35 8, 309 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    K. A. Matveev, Phys. Rev. B 51, 1743 (1995).ADSGoogle Scholar
  13. 13.
    Yu. V. Nazarov, Phys. Rev. Lett. 82, 1245 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    A. Kamenev, Phys. Rev. Lett. 85, 4160–4163 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    Indeed, only the elastic component of the transmission through the interferometer contributes to the interference signal, see e.g. A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41,3436 (1990).Google Scholar
  16. 16.
    Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford 1997).Google Scholar
  17. 17.
    L. Onsager, Phys. Rev. 38, 2265 (1931).ADSMATHCrossRefGoogle Scholar
  18. 18.
    This relation is general and valid in a two terminal geometry, even in the presence of inelastic scattering, not taken into account in our analysis. See M. Büttiker, Phys. Rev. Lett, 57, 1761 (1986); M. Büttiker, IBM J. Res. Dev. 32, 317 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Oreg and Y. Gefen, Phys. Rev. B 55, 13726 (1997).H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999); A. Levy Yeyati and M. Buttiker, Phys. Rev. B 62, 7307 (2000); P. G. Silvestrov and Y. Imry, Phys. Rev. Lett. 85, 2565 (2000).ADSGoogle Scholar
  20. 20.
    O. Entin-Wohlman, C. Hartzstein, and Y. Imry, Phys. Rev. B 34, 921 (1986).ADSGoogle Scholar
  21. 22.
    Allowing the four couplings to have different magnitudes leads t o two main effects. If V L,1 = V L,2V R,1 = V R,2 (left/right asymmetry) the conductance is suppressed as a whole, but all the features described in the text (e.g., zero of the conductance, the appearance of a phase lapse and the merging of the spectral density peaks for s = +1) are still present. The other possible asymmetry, V L,1 = V R,1V R,2 = V L,2 (level asymmetry), spoils the symmetry of the conductance curve with respect to the point ∈ = 0. The qualitative features discussed here remain intact, including the zero of the conductance (which is now shifted with respect to the ∈ = 0 point).Google Scholar
  22. 23.
    Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).ADSCrossRefGoogle Scholar
  23. 24.
    U. Gerland, J. von Delft, T. A. Costi and Y. Oreg, Phys. Rev. Lett. 84, 3710 (2000).ADSCrossRefGoogle Scholar
  24. 25.
    We note that the “transmission phase” so measured may not reflect the actual transmission phase through the QD, but might be affected by multiple reflection paths, reflection from any of the terminals of the interferometer and deviations from unitarity [26 26]Google Scholar
  25. 26.
    A. Aharony, O. Entin-Wohlman, B. I. Halperin, and Y. Imry,Phys. Rev. B 66, 115311 (2002); O. Entin-Wohlman, A. Aharony, Y. Imry, Y. Levinson, and A. Schiller, Phys. Rev. Lett. 88, 166801 (2002).ADSGoogle Scholar
  26. 27.
    R. Berkovits, Y. Gefen, O. Entin-Wohlman, Philos. Mag. B 77, 1123 (1998).ADSGoogle Scholar
  27. 28.
    G. Hackenbroich, W. D. Heiss, H. A. Weidenmuller, Philos. Mag. B 77, 1255 (1998).ADSGoogle Scholar
  28. 29.
    J. Kondo, in Solid State Physics, Eds. H. Ehrenreicht, F. Seitz, D. Turn-bull, Academic Press, New York, Vol. 23,13 (1969); L. Kouwenhoven and L. Glazman, Physics World, 14, Jan., 33 (2001).Google Scholar
  29. 30.
    L. I. Glazman and M. E. Raikh, JETP Lett.47, 452 (1988); T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).ADSGoogle Scholar
  30. 31.
    U. Meirav, E. B. Foxman, Semicond. Sci. Technol. 10, 255 (1995).CrossRefGoogle Scholar
  31. 32.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  32. 33.
    A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
  33. 34.
    N. S. Wingreen and Y. Meir, Phys. Rev. B 49,11040 (1993).ADSGoogle Scholar
  34. 35.
    A. Kaminski, Yu. V. Nazarov, and L. I. Glazman, Phys. Rev. Lett. 83, 384 (1999); A. Kaminski, Yu. V. Nazarov, and L.I. Glazman, Phys. Rev. B 62, 8154 (2000); J. M. Elzerman et al., J. Low Temp. Phys 118, 375 (2000).ADSCrossRefGoogle Scholar
  35. 36.
    D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M. A. Kastner, Nature 391, 156 (1998).ADSCrossRefGoogle Scholar
  36. 37.
    S. M. Cronenwett, T. H. Oosterkamp, L. P. Kouwenhoven, Science, 281, 540 (1998); D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998); F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 83, 804 (1999); J. Schmid, J. Weis, K. Erbel, and K. von Klitzing, Phys. Rev. Lett. 84, 5824 (2000); S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha, and L. P. Kouwenhoven, Nature 405, 764 (2000).Google Scholar
  37. 38.
    Y. Meir, N. S. Wingreen, P. A. Lee, Phys. Rev. Lett. 70, 2601 (1993).ADSCrossRefGoogle Scholar
  38. 39.
    N. S. Wingreen, Y. Meir, Phys. Rev. B49, 11040 (1994).ADSGoogle Scholar
  39. 40.
    D. C. Langreth, Phys. Rev. 150, 516 (1966).ADSCrossRefGoogle Scholar
  40. 41.
    P. A. Nozieres, J. Low Temp. Phys. 17, 31 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Alessandro Silva
    • 1
  • Moty Heiblum
    • 1
  1. 1.Department of Condensed Matter PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations