Advertisement

Counting Statistics of Mesoscopic Noise

  • L. S. Levitov
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)

Abstract

The measurement performed by optical detectors, such as photon counters, is extended in the time domain, which makes it sensitive to temporal correlations of photons [1]. It has been known long ago in the theory of photodetection [2] that understanding photon counting distribution is essentially a problem of many-particle statistics. Similar considerations apply to the electrical noise measurement, which is fundamentally different from photodetection in that the electrons are not destroyed but just counted. The noise measurement, very much like photodetection, is a sensitive probe of temporal correlations between different transmitted electrons.

Keywords

Shot Noise Counting Statistic Fano Factor Counting Distribution Functional Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandel, L. and Wolf, E. (1995) Optical Coherence and Quantum Optics, Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Glauber, R.J. (1963) Photon Correlations, Phys. Rev. Lett. 10, pp. 84–86; The Quantum Theory of Optical Coherence, Phys. Rev. 130, pp. 2529-2539MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Lesovik, G.B. (1989) Excess Quantum Shot Noise in 2D Ballistic Point Contacts, JETP Lett., 49, pp. 592–594ADSGoogle Scholar
  4. 4.
    Khlus, V.A. (1987) Current and Voltage Fluctuations in Microjunctions of Normal and Superconducting Metals, Sov. Phys. JETP, 66, pp. 1243–--[in Russian: ZhETF, 93 (6): 2179-2190 (1987)]Google Scholar
  5. 5.
    Büttiker, M. (1990) Scattering Theory of Thermal and Excess Noise in Open Conductors, Phys. Rev. Lett., 65, pp. 2901–2904ADSCrossRefGoogle Scholar
  6. 6.
    Beenakker, C.W.J. and Büttiker, M. (1992) Suppression of shot noise in metallic diffusive conductors, Phys. Rev. B, 46, pp. 1889–1892ADSCrossRefGoogle Scholar
  7. 7.
    Kane, C.L. and Fisher, M.P.A. (1994) Nonequilibrium Noise and Fractional Charge in the Quantum Hall Effect, Phys. Rev. Lett., 72, pp. 724–727ADSCrossRefGoogle Scholar
  8. 8.
    Blanter, Ya.M. and Büttiker, M. (2000) Shot Noise in Mesoscopic Conductors, Phys. Rep. 336, pp. 2–166ADSCrossRefGoogle Scholar
  9. 9.
    Reznikov, M., Heiblum, M., Shtrikman, H. and Mahalu, D. (1995) Temporal Correlation of Electrons: Suppression of Shot Noise in a Ballistic Quantum Point Contact, Phys. Rev. Lett., 75, pp. 3340–3343ADSCrossRefGoogle Scholar
  10. 10.
    Kumar, A., Saminadayar, L., Glattli, D.C., Jin, Y. and Etienne, B. (1996) Experimental Test of the Quantum Shot Noise Reduction Theory, Phys. Rev. Lett., 76, pp. 2778–2781ADSCrossRefGoogle Scholar
  11. 11.
    de-Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V. Bunin, G.and Mahalu, D. (1997) Direct Observation of a Fractional Charge, Nature, 389, pp. 162–164ADSCrossRefGoogle Scholar
  12. 12.
    Saminadayar, L., Glattli, D.C., Jin, Y. and Etienne, B. (1997) Observation of the e/3 Fractionally Charged Laughlin Quasiparticles, Phys. Rev. Lett., 79, pp. 2526–2529ADSCrossRefGoogle Scholar
  13. 13.
    Reznikov, M., de-Picciotto, R., Griffiths, T.G., Heiblum, M. and Umansky, V. (1999) Observation of Quasiparticles with One-Fifth of an Electron’s Charge, Nature, 399, pp. 238–241ADSCrossRefGoogle Scholar
  14. 14.
    Griffiths, T.G., Comforti, E., Heiblum, M., Stern, A., Umansky, V. (2000) Evolution of Quasiparticle Charge in the Fractional Quantum Hall Regime, Phys. Rev. Lett., 85, pp. 3918–3921ADSCrossRefGoogle Scholar
  15. 15.
    Steinbach, A.H., Martinis, J.M., Devoret, M.H. (1996) Observation of Hot-Electron Shot Noise in a Metallic Resistor, Phys. Rev. Lett., 76, pp. 3806–3809ADSCrossRefGoogle Scholar
  16. 16.
    Schoelkopf, R.J., Burke, P.J., Kozhevnikov, A.A. and Prober, D.E. (1997) Frequency dependence of shot noise in a diffusive mesoscopic conductor, Phys. Rev. Lett., 78, pp. 3370–3373ADSCrossRefGoogle Scholar
  17. 17.
    Schoelkopf, R.J., Kozhevnikov, A.A., Prober, D.E. and Rooks, M. (1998) Observation of ”Photon-Assisted” Shot Noise in a Phase-Coherent Conductor, Phys. Rev. Lett., 80, pp. 2437–2440ADSCrossRefGoogle Scholar
  18. 18.
    Levitov, L.S. and Lesovik, G.B. (1993) Charge Distribution in Quantum Shot Noise, JETP Lett., 58, pp. 230–235ADSGoogle Scholar
  19. 19.
    Ivanov, D.A. and Levitov, L.S. (1993) Statistics of Charge Fluctuations in Quantum Transport in an Alternating Field, JETP Lett., 58, pp. 461–468ADSGoogle Scholar
  20. 20.
    Levitov, L.S. and Lesovik, G.B. (1994) Quantum Measurement in Electric Circuit, cond-mat/9401004, unpublishedGoogle Scholar
  21. 21.
    Ivanov, D.A., Lee, H.W., Levitov, L.S. (1997) Coherent States of Alternating Current, Phys. Rev., B56, pp. 6839–6850ADSGoogle Scholar
  22. 22.
    Levitov, L.S. (2001) Counting Statistics of Charge Pumping in an Open System, cond-mat/0103617, unpublishedGoogle Scholar
  23. 23.
    Lee, H.W., Levitov, L.S. and Yakovets, A.Yu. (1995) Universal Statistics of Transport in Disordered Conductors” Phys. Rev. B, 51, pp. 4079–4083ADSCrossRefGoogle Scholar
  24. 24.
    Levitov, L.S., Lee, H.W. and Lesovik, G.B. (1996) Electron counting statistics and coherent states of electric current,” J. of Math. Phys., 37, pp. 4845–4866MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Nazarov, Yu.V. (1999) Universalities of Weak Localization, Ann. Phys. (Leipzig), 8, SI-193; see also: cond-mat/9908143Google Scholar
  26. 26.
    Nazarov, Yu.V. and Bagrets, D.A. (2002) Circuit Theory for Full Counting Statistics in Multi-Terminal Circuits, Phys. Rev. Lett., 88, pp. 196801–196804ADSCrossRefGoogle Scholar
  27. 27.
    Muzykantskii, B.A. and Khmelnitskii, D.E. (1994) Quantum Shot Noise in a NS Point Contact, Phys. Rev. B, 50, pp. 3982–5483ADSCrossRefGoogle Scholar
  28. 28.
    Belzig, W. and Nazarov, Yu.V. (2001) Full Current Statistics in Diffusive Normal-Superconductor Structures, Phys. Rev. Lett., 87, pp. 067006–067009ADSCrossRefGoogle Scholar
  29. 29.
    Andreev, A.V. and Kamenev, A. (2000) Counting Statistics of an Adiabatic Pump, Phys. Rev. Lett., 85, pp. 1294–1297Google Scholar
  30. 30.
    Taddei, F. and Fazio, R. (2002) Counting Statistics for Entangled Electrons, Phys. Rev. B, 65, pp. 075317–075323ADSCrossRefGoogle Scholar
  31. 31.
    Bagrets, D.A. and Nazarov, Yu.V. (2002) Full Counting Statistics of Charge Transfer in Coulomb Blockade Systems, cond-mat/0207624Google Scholar
  32. 32.
    Beenakker, C.W.J. and Schomerus, H. (2001) Counting Statistics of Photons Produced by Electronic Shot Noise, Phys. Rev. Lett. 86, pp. 700–703ADSCrossRefGoogle Scholar
  33. 33.
    Kindermann, M., Nazarov, Yu.V. and Beenakker, C.W.J. (2002) Manipulation of photon statistics of highly degenerate chaotic radiation, Phys. Rev. Lett., 88, pp. 063601–063604ADSCrossRefGoogle Scholar
  34. 34.
    Levitov, L.S. and Reznikov, M. (2001) Electron Shot Noise Beyond the Second Moment cond-mat/0111057, unpublishedGoogle Scholar
  35. 35.
    Gutman, D.B. and Gefen, Y. (2002) Shot Noise at High Temperatures, cond-mat/0201007Google Scholar
  36. 36.
    Nagaev, K.E. (2002) Cascade Boltzmann-Langevin Approach to Higher-Order Current Correlations in Diffusive Metal Contacts, cond-mat/0203503Google Scholar
  37. 37.
    Nazarov, Yu.V. and Kindermann, M. (2001) Full Counting Statistics of a General Quantum Mechanical Variable, condmat/0107133Google Scholar
  38. 38.
    Sukhorukov, E.V. and Loss, D. (2001) Shot noise of weak cotunneling current: Non-equilibrium fluctuation-dissipation theorem, in: ”Electronic Correlations: From meso-to nano-physics”, edited by G. Montambaux and T. Martin, XXXVI Rencontres de Moriond; also: cond-mat/0106307Google Scholar
  39. 39.
    Mahan, G.D. (1981) Many-Particle Physics, Sec. 9.3. Plenum Press, New YorkGoogle Scholar
  40. 40.
    Beenakker, C.W.J. (1997) Random-matrix theory of quantum transport, Rev. Mod. Phys.69, pp. 731–808ADSCrossRefGoogle Scholar
  41. 41.
    Glattli D.C., Jin, Y., Reydellet, L.-H. and Roshe, P. (2002) Photo-Assisted Noise in Quantum Point Contacts, this volumeGoogle Scholar
  42. 42.
    Switkes, M., Marcus, C.M., Campman, K. and Gossard, A.C. (1999) An Adiabatic Quantum Electron Pump, Science 283, pp. 1905–1908ADSCrossRefGoogle Scholar
  43. 43.
    Klich, I. (2002) Full Counting Statistics, this volumeGoogle Scholar
  44. 44.
    Lee, H.W. and Levitov, L.S. (1995) Estimate of Minimal Noise in a Quantum Conductor, preprint cond-mat/9507011, unpublishedGoogle Scholar
  45. 45.
    Spivak, B. Zhou, F. and Beal Monod, M.T. (1995) Mesoscopic Mechanisms of the Photovoltaic Effect and Microwave Absorption in Granular Metals, Phys. Rev. B 51, pp. 13226–13230ADSGoogle Scholar
  46. 46.
    Altshuler, B.L. and Glazman, L.I. (1999) Condensed matter physics — Pumping electrons, Science 283, pp. 1864–1865CrossRefGoogle Scholar
  47. 47.
    Brouwer, P.W. (1998) Scattering approach to parametric pumping, Phys. Rev. B58, pp. 10135–10138Google Scholar
  48. 48.
    Polianski, M. L., Vavilov, M.G., Brouwer, P.W. (2002) Noise through Quantum Pumps, Phys. Rev. B 65, pp. 245314–245322ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • L. S. Levitov
    • 1
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations