Advertisement

Full Counting Statistics in Multi-Terminal Normal Metal Tunnel Junction Structures

  • J. Börlin
  • W. Belzig
  • C. Bruder
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)

Abstract

Current fluctuations in multi-terminal structures are at the heart of mesoscopic physics (see Ref. [1]). The current noise power in small structures depends on correlations between charge transfer events. For example, in a one-channel conductor with transparency T the noise power at zero temperature is \( P_I = 2e\bar I(1 - T) \) [2, 3], where \( \bar I \) is the average current. The suppression factor 1 − T is a result of the Fermi correlation between electrons in different scattering events. An electron tunneling through the channel prevents the next electron from entering (‘antibunching’). Thus, the noise is suppressed in comparison to fully uncorrelated charge transfer (described by Schottky noise \( S_I = 2e\bar I \)). A convenient measure of the suppression is the Fano factor defined as \( F = P_I /2e\bar I. \) In the case of two tunnel junctions in series with conductances g 1(2), respectively, the Fano factor can be expressed as 2g 1 g 2/(g 1 + g 2)2. It is suppressed below 1 for all ratios of g 1 and g 2, again a consequence of the Pauli principle.

Keywords

Noise Power Tunnel Junction Joint Probability Distribution Pauli Principle Fano Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Khlus, Zh. Eksp. Teor. Fiz. 93, 2179 (1987) [Sov. Phys. JETP 66, 1243 (1987).Google Scholar
  3. 3.
    G. B. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. 49, 513 (1989) [JETP Lett. 49, 592 (1989).Google Scholar
  4. 4.
    M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    M. Büttiker, Physica B 175, 199 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    M. Büttiker, Phys. Rev. B 46, 12485 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    M. Henny et al., Science 284, 296 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    W. D. Oliver et al., Science 284, 299 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    S. Oberholzer et al., Physica (Amsterdam) E 6, 314 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    L. S. Levitov and G. B. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. 58, 225 (1993) [JETP Lett. 58, 230 (1993)].Google Scholar
  11. 11.
    L. S. Levitov, H. W. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845 (1996).MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    H. Lee, L. S. Levitov, and A. Yu. Yakovets, Phys. Rev. B 51, 4079 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    B. A. Muzykantskii and D. E. Khmelnitzkii, Phys. Rev. B 50, 3982 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. V. Nazarov, Ann. Phys. (Leipzig) 8, SI–193 (1999).Google Scholar
  15. 15.
    P. Samuelsson and M. Büttiker, Phys. Rev. B 66, 201306(R) (2002).ADSCrossRefGoogle Scholar
  16. 16.
    P. Samuelsson, cond-mat/0210409 (unpublished).Google Scholar
  17. 17.
    M. Kindermann, Yu. V. Nazarov, and C. W. J. Beenakker, Phys. Rev. Lett. 88, 063601 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85, 4578 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    H.-A. Engel and D. Loss, Phys. Rev. B 65, 195321 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    F. Taddei and R. Fazio, Phys. Rev. B 65, 075317 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    M.-S. Choi, F. Plastina, and R. Fazio, cond-mat/0208318 (unpublished).Google Scholar
  22. 22.
    M. Büttiker, IBM J. Res. Develop. 32, 63 (1988).CrossRefGoogle Scholar
  23. 23.
    C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    Yu. V. Nazarov, Superlattices Microst. 25, 1221 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett. 87, 067006 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    Yu. V. Nazarov and D. Bagrets, Phys. Rev. Lett. 88, 196801 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    J. Börlin, W. Belzig, and C. Bruder, Phys. Rev. Lett. 88, 197001 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    J. Börlin, diploma thesis, University of Basel (2002).Google Scholar
  30. 30.
    S. A. van Langen and M. Büttiker, Phys. Rev. B 56, 1680 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • J. Börlin
    • 1
  • W. Belzig
    • 1
  • C. Bruder
    • 1
  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland

Personalised recommendations