Advertisement

Edge states and quantum Hall effects in d+id’ superconductors

  • Baruch Horovitz
  • Anatoly Golub
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)

Abstract

Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. We evaluate the temperature and thickness dependence of the resulting spontaneous magnetization and show a marked difference between weak and strong BTRS. We also derive the Hall conductance which vanishes at zero wavevector q and finite frequency ω, however at finite q,ω it has an unusual structure. The chirality of the surface states leads to quantum Hall effects for spin and heat transport. Simulations of a network model show a new universality class for the corresponding Hall transition.

Keywords

Edge State Universality Class Spontaneous Magnetization Quantum Hall Effect Hall Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Covington M. et al. (1997) Phys. Rev. Lett. 79, 277.ADSCrossRefGoogle Scholar
  2. 2.
    Deutscher G., Dagan Y., Kohen A. and Krupke R. (2001) Physica C 3413481629; Dagan Y. and Deutscher G. (2001) Phys. Rev. Lett 87, 177004; Phys. Rev. B 64, 092509.Google Scholar
  3. 3.
    Carmi R., Polturak E., Koren G., and Averbach A. (2000) Nature 404, 853.ADSCrossRefGoogle Scholar
  4. 4.
    Alff L. et al. (1998) European Phys. J. B 5, 423.ADSCrossRefGoogle Scholar
  5. 5.
    Sharoni A., Koren G. and Millo O. (2001) Europhysics Letts. 54, 675; Sharoni A. et al. (2001) cond-mat/0111156.ADSCrossRefGoogle Scholar
  6. 6.
    Higashitani S. (1997) J. Phys. Soc. Japan 66, 2556.ADSCrossRefGoogle Scholar
  7. 7.
    Barash Yu. S., Kalenkov M.S. and Kurkijärvi J. (2000) Phys. Rev. B 62 6665.ADSCrossRefGoogle Scholar
  8. 8.
    Sigrist M., Bailey D.B. and Laughlin R. B. (1995) Phys. Rev. Lett. 74, 3249.ADSCrossRefGoogle Scholar
  9. 9.
    Matsumoto M. and Shiba H. (1995) J. Phys. Soc. Jpn. 64, 3384; ibid 64, 4867.ADSCrossRefGoogle Scholar
  10. 10.
    Fogelstrom M., Rainer D., and Sauls J.A. (1997) Phys. Rev. Lett. 79, 281.ADSCrossRefGoogle Scholar
  11. 11.
    Goryo J. and Ishikawa K. (1999) Phys. Letts. A 260, 294.ADSCrossRefGoogle Scholar
  12. 12.
    Kagalovsky V., Horovitz B., Avishay Y. and Chalker J. T. (1999) Phys. Rev. Lett. 82, 3516.ADSCrossRefGoogle Scholar
  13. 13.
    Senthil T., Marston J.B. and Fisher M. P. A., Phys. Rev. B (1999) Phys. Rev. B, 4245.Google Scholar
  14. 14.
    Read N. and Green D. (2000) Phys.Rev. B 61, 10267.ADSCrossRefGoogle Scholar
  15. 15.
    Goryo J. and Ishikawa K. (1998) Phys.Lett. A 246, 549.ADSCrossRefGoogle Scholar
  16. 16.
    Furusaki A., Matsumoto M. and Sigrist M. (2001) Phys. Rev. B 64, 054514.ADSCrossRefGoogle Scholar
  17. 17.
    Volovik G. E. (1997) JETP Lett. 66, 522.ADSCrossRefGoogle Scholar
  18. 18.
    Altland A. and Zirnbauer M. R., (1997) Phys. Rev. B 55, 1142.ADSCrossRefGoogle Scholar
  19. 19.
    Horovitz B. and Golub A., (2002) EuroPhys. Lett., 57, 892.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Baruch Horovitz
    • 1
  • Anatoly Golub
    • 1
  1. 1.Department of PhysicsBen-Gurion University of the Negev Beer-ShevaIsrael

Personalised recommendations