Possible weak temperature dependence of electron dephasing

  • V. V. Afonin
  • J. Bergli
  • Y. M. Galperin
  • V. L. Gurevich
  • V. I. Kozub
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)


The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levels caused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal symmetry caused by time-dependent fluctuations of the scattering potential. These fluctuations originate from an interaction between the dynamic defects and conduction electrons forming a thermal bath. The first contribution to the dephasing rate saturates as temperature decreases. The second contribution does not saturate, although its temperature dependence is rather weak, ∝ T 1/3. The quantitative estimates based on the experimental data show that these mechanisms considered can explain the weak temperature dependence of the dephasing rate in some temperature interval. However, below some temperature dependent on the model of dynamic defects the dephasing rate tends rapidly to zero. The relation to earlier studies of the dephasing caused by the dynamical defects is discussed.


Interference Pattern Thermal Bath Weak Localization Time Reversal Symmetry Resonant Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Umansky and H. Shtrikman, Phys. Rev. Lett. 77, 4664 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    A. Yacoby, M. Heiblum, D. Mahalu, Hadas Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett., 81, 1074 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Phys. Rev. Lett. 82,3190 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    P. Mello, Y. Imry, B. Shapiro, Phys. Rev. B 61, 16570 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Imry, H. Fukyama, and P. Schwab, Europhys. Letters, 47, 608 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    A. Zawadowski, Jan von Delft and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    Kagn-Hun Ahn, P. Mohanty, Phys. Rev. B 63, 195301 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J. L. Black, in Glassy Metals 1, edited by H. J. Günterodt and H. Beck (Springer, Berlin 1981).Google Scholar
  12. 12.
    V. V. Afonin, J. Bergli, Y. M. Galperin, V. L. Gurevich, V. I. Kozub, Phys. Rev. B (in press), cond-mat/0205438.Google Scholar
  13. 13.
    A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. B 41, 3436 (1990); Y. Imry, Introduction to Mesoscopic Physics, (Oxford University Press, 1997).ADSGoogle Scholar
  14. 14.
    P. Schwab, Eur. Phys. J. B 18, 189 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982); see also B. L. Altshuler, A. G. Aronov, A. I. Larkin, D. E. Khmelnitskii, Sov. Phys. JETP 54, 411 (1981). [Zh. Eksp. Teor. Fiz. 81, 768 (1981)].ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Afonin, Y. M. Galperin, and V. L. Gurevich, Sov. Phys. JETP 61,1130 (1985)[Zh. Eksp. Teor. Fiz. 88 1906 (1985)].Google Scholar
  17. 17.
    V. V. Afonin, Y. M. Galperin, and V. L. Gurevich, Phys. Rev. B 40, 2598 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    V. I. Kozub and A. M. Rudin, Phys. Rev. B 55, 259 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Imry, in: Tunneling in Solids, Proceedings of the 1967 NATO Conference. edited by E. Burstein and S. Lundquist(Plenum Press, New York) ch. 35 (1969).Google Scholar
  20. 20.
    W. A. Phillips, Phys. Rev. Lett. 61, 2632 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Abrikosov, Physics 2 21(1965).Google Scholar
  22. 22.
    S. V. Maleev, Sov. Phys. JETP, 57, 149 (1983)[Zh. Eksp. Teor. Fiz. 84, 260 (1983)].Google Scholar
  23. 23.
    S. V. Maleev, Theor. and Math. Physics, 4, 694 (1970) [Teor. Mat. Fiz. 4, 86 (1970)].Google Scholar
  24. 24.
    G. C. Evans, Rend. R./Accad. dei Lincei 20, 453 (1911).zbMATHGoogle Scholar
  25. 25.
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    K. S. Ralls and R. A. Buhrman, Phys. Rev. Lett. 60, 2434 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    D. C. Ralph and R. A. Buhrman, Phys. Rev. Lett. 69, 2118 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    I. L. Aleiner, B. L. Altshuler, Y. M. Galperin, Phys. Rev. B 63, 201401(R) (2001).ADSCrossRefGoogle Scholar
  29. 29.
    I. L. Aleiner, B. L. Altshuler, Y. M. Galperin, and T. A. Shutenko, Phys. Rev. Lett. 86, 2629 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    A. N. Aleshin, V. I. Kozub, D.-S. Suh, Y. W. Park, Phys. Rev. B 64 (2001).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • V. V. Afonin
    • 1
  • J. Bergli
    • 2
  • Y. M. Galperin
    • 1
    • 2
    • 3
  • V. L. Gurevich
    • 1
  • V. I. Kozub
    • 1
    • 3
  1. 1.Solid State DivisionA. F. Ioffe Physico-Technical InstitutePetersburgRussia
  2. 2.Department of PhysicsUniversity of OsloOsloNorway
  3. 3.Argonne National LaboratoryArgonneUSA

Personalised recommendations