Quantum Electro-Mechanical Systems

Recipe to make a mechanical device interfere with itself
  • Keith Schwab
Conference paper
Part of the NATO Science Series book series (NAII, volume 125)


A dominant theme of modern physics is to show that quantum mechanics is a valid description of the world, from atomic lengths scales and upward. This pursuit is aimed at both answering questions about the apparent boundary between the classical and quantum world, and at exploiting quantum behavior for technological purpose. As a result of the intense effort in quantum computing, nano-electronic devices have entered this realm and shown themselves to be fully quantum mechanical. Single electron devices and SQUIDs have recently exhibited quantized energy levels, Schrodinger evolution, and superposition states (Nakamura et al., 1999; Friedman et al., 2000; Vion et al., 2002).


Coherent State Entangle State Physical Review Letter Superposition State Mechanical Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aassime, A., D. Gunnarsson, K. Bladh, P. Delsing, and R. Schoelkopf: 2001, ‘Radio-frequency single-electron transistor: toward the shot-noise limit’. Applied Physics Letters 79(24), 4031–4033.Google Scholar
  2. Armour, A., M. Blencowe, and K. Schwab: 2002, ‘Mechanical Lamb-shift analogue for the Cooper-pair box’. Physica B 316, 406–407.Google Scholar
  3. Blencowe, M. and M. Wybourne: 1999, ‘Quantum Squeezing of Mechanical Motion for Micron-Sized Cantilevers’. Physica B 280(1–4), 555–556.Google Scholar
  4. Bocko, M. F. and R. Onofrio: 1996, ‘On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress’. Reviews of Modern Physics 68(3), 755–799.Google Scholar
  5. Bose, S., K. Jacobs, and P. Knight: 1999, ‘Scheme to probe the decoherence of a macroscopic object’. Physical Review A 59(5), 3204–3210.Google Scholar
  6. Braginsky, V. B. and F. Y. Khalili: 1992, Quantum Measurement. Cambridge University Press.Google Scholar
  7. Brune, M., P. Nussenzveig, F. Schmidt-Kaler, F. Bernardot, A. Maali, J. Raimond, and S. Haroche: 1994, ‘From Lamb Shift to Light Shifts: Vacuum and Subphoton Cavity Fields Measured by Atomic Phase Sensitive Detection’. Physical Review Letters 72, 3339–3342.Google Scholar
  8. Carr, S., W. Lawrence, and M. Wybourne: 2001, ‘Accessibility of quantum effects in mesomechanical systems’. Physical Review B 64, 220101.Google Scholar
  9. Caves, C. M., K. S. Thorne, R. W. Dreaver, V. D. Sandberg, and M. Zimmermann: 1980, ‘On the measurement of a weak classical force coupled to a quantum-mechanical oscillator: I. Issues of principle’. Reviews of Modern Physics 52(2), 341–392.Google Scholar
  10. Cirac, J. and P. Zoller: 1995, ‘Quantum Computing with Cold Trapped Ions’. Physical Review Letters 74(20), 4091–4094.Google Scholar
  11. Cottet, A., D. Vion, A. Assime, P. Joyez, D. Esteve, and M. Devoret: 2002, ‘Implementation of a combined charge-phase quantum bit in a superconducting circuit’. Physica C 367, 197–203.Google Scholar
  12. Cross, M. and R. Lifshitz: 2001, ‘Elastic wave transmission at an abrupt junction in a thin plate with applications to heat transport and vibrations in mesoscopic systems’. Phys. Rev. B 64, 0854324.Google Scholar
  13. Devoret, M. H. and R. J. Schoelkopf: 2000, ‘Amplifying quantum signals with the single electron transistor’. Nature 406, 19–26.Google Scholar
  14. Friedman, J. R., V. Patel, W. Chen, S. Tolpygo, and J. Lukens: 2000, ‘Quantum superposition of distinct macroscopic states’. Nature 406, 43–46.Google Scholar
  15. Haroche, S. and J. Raimond: 1994, ‘Manipulation of Nonclassical Field States in a Cavity by Atom Interferometry’. In: P. Berman (ed.): Cavity Quantum Electrodynamics. Acedemic Press, Inc., p. 123.Google Scholar
  16. Hopkins, A., K. Jacobs, S. Habib, and K. Schwab: 2003, ‘Feedback cooling of a nanomechanical resonator’. Submitted to Phys. Rev. B.Google Scholar
  17. Huang, X. M. H., C. A. Zorman, M. Mehregany, and M. L. Roukes: 2003, ‘Nanodevice motion at microwave frequencies’. Nature 421, 496.Google Scholar
  18. Irish, E. K. and K. Schwab: 2003, ‘Quantum Measurements with a coupled nanomechanical resonator-cooper pair box system’. submitted to Physical Review B.Google Scholar
  19. Kimble, H.: 1994, ‘Structure and Dynamics of Cavity Quantum Electrodynamics’. In: P. Berman (ed.): Cavity Quantum Electrodynamics. Acedemic Press, Inc., p. 203.Google Scholar
  20. Korotkov, A. N.: 1994, ‘Instrinsic noise of the single electron transistor’. Physical Review B 49(15), 10381–10392.Google Scholar
  21. Leggett, A.: 2002, ‘Testing the Limits of Quantum Mechanics: Motivation, State of Play, Prospects’. Journal of Physics Condensed Matter 14, R415–R451.Google Scholar
  22. Lu, N.: 1989, ‘Effects of dissipation on photon statistics and the lifetime of a pure number state’. Physical Review A 40, 1707–1708.Google Scholar
  23. Mozyrsky, D. and I. Martin: 2002, ‘Quantum-classical transition induced by electrical measurement’. Phys. Rev. Lett. 89, 018301.Google Scholar
  24. Nagerl, H., D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, M. Brune, J. Raimond, and S. Haroche: 2000, ‘Cavity QED-Experiments: Atoms in Cavities and Trapped Ions’. In: D. Bouwmeester, A. Ekert, and A. Zeilinger (eds.): The Physics of Quantum Information. New York: Springer.Google Scholar
  25. Nakamura, Y., Y. Pashkin, and J. Tsai: 1999, ‘Coherent control of a macroscopic quantum states in a single-Cooper-pair box’. Nature 398, 786–788.Google Scholar
  26. Nakamura, Y., Y. Pashkin, T. Yamamoto, and J. Tsai: 2002, ‘Charge Echo in a Cooper-Pair Box’. Phys. Rev. Lett. 88, 047901.Google Scholar
  27. Nogues, G., A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche: 1999, ‘Seeing a single photon without destroying it’. Nature 400, 239–242.Google Scholar
  28. Park, H., J. Park, A. K. Lim, E. H. Anderson, A. P. Alivisatos, and P. McEuen: 2000, ‘Nanomechanical oscillations in a single-C60 transistor’. Nature 407, 57–60.Google Scholar
  29. Schoelkopf, R., P. Wahlgren, A. Kozhevnikov, P. Delsing, and D. Prober: 1998, ‘The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer’. Science 280(5367), 1238–1242.Google Scholar
  30. Schwab, K.: 2001, ‘Quantum Measurement with Nanomechanical Systems’. In: R. Clark (ed.): Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computing. pp. 189–194.Google Scholar
  31. Schwab, K.: 2002, ‘Frequency and Disipation Control of a Nanomechanical Resonator using a Single-electron Transistor’. Appl. Phys. Lett. 88, 047901.Google Scholar
  32. Schwab, K., J. Arlett, J. Worlock, and M. Roukes: 2001, ‘Thermal Conductance through discrete quantum channels’. Physica E 9(1), 60–68.Google Scholar
  33. Schwab, K., E. Henriksen, J. Worlock, and M. Roukes: 2000, ‘Measurement of the quantum of thermal conductance’. Nature 404(6781), 974–977.Google Scholar
  34. Sekaric, L., J. Parpia, H. Craighead, T. Feygelson, B. Houston, and J. Butler: 2002, ‘Nanomechanical resonant structures in nanocrystallline diamond’. Appl. Phys. Lett. 81, 4455–4457.Google Scholar
  35. Sidles, J., J. Garbini, K. Bruland, D. Rugar, O. Zuger, S. Hoen, and C. Yannoni: 1995, ‘Magnetic resonance force microscopy’. Reviews of Modern Physics 67, 249–265.Google Scholar
  36. Thorne, K. S., R. W. P. Drever, and C. M. Caves: 1978, ‘Quantum Nondemolition Measurements of Harmonic Oscillators’. Physical Review Letters 40(11), 667–671.Google Scholar
  37. Vion, D., A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. Devoret: 2002, ‘Manipulating the quantum state of an electrical circuit’. Science 296, 886–889.Google Scholar
  38. Zhang, Y. and M. Blencowe: 2001, ‘Intrinsic noise of a micro-mechanical displacement detector based on the radio-frequency single-electron transistor’. Journal of Applied Physics 91, 4249–4255.Google Scholar
  39. Zorin, A.: 1996, ‘Quantum-Limited Electrometer Based on Single Cooper-Pair Tunneling’. Physical Review Letters 76(23), 4408–4411.Google Scholar
  40. Zurek, W. H., S. Habib, and J. P. Paz: 1993, ‘Coherent States via Decoherence’. Physical Review Letters 70(9), 1187–1190.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Keith Schwab
    • 1
  1. 1.Laboratory for Physical SciencesCollege ParkUSA

Personalised recommendations