Shape Fabrication of Cotton-Derived Inorganic Hollow Ribbons

  • A. B. Bourlinos
  • N. Boukos
  • D. Petridis
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)


Cotton ribbons serve as unique templates for the shape fabrication of a wide range of woven inorganic hollow ribbons, like ceramic, semiconducting, magnetic and others. In principle, this novel shaping process is very simple and of low cost due to the nature of the cotton template. An interesting highlight of the present work concerns the morphogenesis of magnetic hollow ribbons of γ-Fe2O3 and its effect on its magnetic properties.


Cotton Material Inorganic Phase Random Packing Cotton Surface Twist Ribbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, J. S.; Varolii, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.CrossRefGoogle Scholar
  2. 2.
    Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature 1997, 385, 420.CrossRefGoogle Scholar
  3. 3.
    Göltner, C. G.; Berton, B.; Kramer, E.; Antonietti, M. Chem. Commun. 1998, 2287.Google Scholar
  4. 4.
    Chandrappa, G. T.; Steunou, N.; Livage, J. Nature 2002, 416, 702.CrossRefGoogle Scholar
  5. 5.
    Nakamura, H.; Matsui, Y. J. Am. Chem. Soc. 1995, 117, 2651.CrossRefGoogle Scholar
  6. 6.
    Jung, J. H.; Ono, Y.; Shinkai, S. Chem. Eur. J. 2000, 6, 4552.CrossRefGoogle Scholar
  7. 7.
    Jung, J. H.; Kobayashi, H.; Van Bommel, K. J. C; Shinkai, S.; Shimizu, T. Chem. Mater. 2002, 14, 1445.CrossRefGoogle Scholar
  8. 8.
    Bergbreiter, D. E. Angew. Chem. Int. Ed. 1999, 38, 2870.CrossRefGoogle Scholar
  9. 9.
    Caruso, F. Chem. Eur. J. 2000, 6, 413.CrossRefGoogle Scholar
  10. 10.
    Caruso, F. Adv. Mater. 2001, 73, 11.CrossRefGoogle Scholar
  11. 11.
    Livage, J.; Bouhedja, L.; Bonhomme, C. J. Sol-Gel Sci. Technol. 1998, 13, 65.CrossRefGoogle Scholar
  12. 12.
    Imai, H.; Iwaya, Y.; Shimizu, K.; Hirashima, H. Chem. Lett. 2000, 906.Google Scholar
  13. 13.
    Caruso, R. A.; Schattka, J. H. Adv. Mater. 2000, 12, 1921.CrossRefGoogle Scholar
  14. 14.
    Shigapov, A. N.; Graham, G. W.; McCabe, R. W.; Plummer Jr, H. K. Appl. Catal. A: Gen. 2001, 210, 287.CrossRefGoogle Scholar
  15. 15.
    Gallagher, P. K. Mat. Res. Bull. 1968, 3, 225.CrossRefGoogle Scholar
  16. 16.
    Mayes, E. L.; Vollrath, F.; Mann, S. Adv. Mater. 1998, 10, 801.CrossRefGoogle Scholar
  17. 17.
    Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Chem. Mater. 2001, 13, 109.CrossRefGoogle Scholar
  18. 18.
    Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.CrossRefGoogle Scholar
  19. 19.
    The composition of the magnetic hollow ribbons is purely that of an iron(III) oxide phase as evidenced from iron elemental analysis.Google Scholar
  20. 20.
    Powdered γ-Fe2O3 was prepared under identical conditions with those applied for the synthesis of the γ-Fe2O3 hollow ribbons.Google Scholar
  21. 21.
    Bourlinos, A. B.; Petridis, D. unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • A. B. Bourlinos
    • 1
  • N. Boukos
    • 1
  • D. Petridis
    • 1
  1. 1.Institute of Materials ScienceNCSR “Demokritos”AthensGreece

Personalised recommendations