• J. F. Scott
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)


Beginning in the 1950s every large US microelectronics company (Bell Labs, IBM, Ford, RCA, etc.) was involved in ferroelectrics research. The main driving force was the idea that the +P polarization state and the −P polarization state of a ferroelectric could be used to encode the “1” and “0” of the Boolean algebra in which modern digital computers operate. At that time, however, ferroelectrics were available only as single crystals or rather thick ceramics. Since a typical coercive field for switching a ferroelectric from +P to −P (or vice versa) is ca. 40 kV/cm, a 1 mm thick device would have an operating voltage of 4000 Volts! Moreover, the devices were expensive. Therefore as silicon DRAM (dynamic random access memories) devices developed rapidly, ferroelectric RAMs were left on the back-burner as objects of mere academic novelty. This changed rapidly through the 1980s as oxide films as thin as 20 nm were fabricated in pinhole-free 6” commercial wafer form. At that point the advantages of ferroelectric memories over Si DRAMs was recognized once again: They are non-volatile (the memory does not need refreshing, like DRAMs, and does not forget if power is interrupted); they are radiation hard, no single event upset — SEU; and they are lighter in weight than Core magnetic memories, and 1000x faster to erase and rewrite than are EEPROMs — electrically erasable programmable read-only memories).


Dynamic Random Access Memory Bismuth Titanate Confinement Energy Sense Amplifier Ferroelectric Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samsung 4 Mb FRAM: D. Jung et al., IEDM (1999, 2000); VLSI (1997, 1998); Integ. Ferroelec. (2001); Jpn. J. Appl. Phys. (1996).Google Scholar
  2. 2.
    Panasonic 4 Mbit FRAM: T. Otsuki et al., Integ. Ferroelec. (2001); see also J. F. Scott, Ferroelectrics 2000, ed. N. M. Alford and E. Yeatman (IOM Commun., Oxford, 2000), pp.1–12.Google Scholar
  3. 3.
    S. Aggarwal, C. S. Ganpule, I. G. Jenkins, B. Nagaraj, A. Stanishevsky, J. Melngailis, E. Williams, and R. Ramesh, Integ. Ferroelec. 28, 213–225 (2000); C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, and R. Ramesh, Appl. Phys. Lett. 75, 409-411 (1999).CrossRefGoogle Scholar
  4. 4.
    M. Alexe, C. Harnagea, D. Hesse, and U. Goesele, Appl. Phys. Lett. 78, 1793–1795 (1999).CrossRefGoogle Scholar
  5. 5.
    J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).Google Scholar
  6. 6.
    H. Ishiwara, Jpn. J. Appl. Phys. 32, 442 (1993); H. Ishiwara, T. Shimamura, and E. Tokumitsu, Jpn. J. Appl. Phys. 36, 1655 (1997).CrossRefGoogle Scholar
  7. 7.
    J. Schilling, F. Mueller, S. Matthias, R. B. Wehrspohn, U. Goesele, and K. Busch, Appl. Phys. Lett. 78, 1180–2 (2001); S. Ottow, V. Lehmann, and H. Foell, Appl. Phys. A63, 153-159 (1996).CrossRefGoogle Scholar
  8. 8.
    P. K. Tien and A. A. Ballman, J. Vac. Tech. 12, 892 (1975).Google Scholar
  9. 9.
    J. Feinberg, Optical Phase Conjugates (Academic, New York, 1983); J. Feinberg,. D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980); D. L. Staebler and J. J. Amodei, J. Appl. Phys. 43, 1042 (1972); S. K. Kurtz, S. D. Kozikowski, and L. J. Wolfram, Electrooptic and Photorefractive Materials, ed. P. Gunter (Springer, Berlin, 1987), p.110.Google Scholar
  10. 10.
    R. A. O’Sullivan, K. W. McGregor, and J. F. Scott, J. Phys. Condens. Mat. 13, R195–234 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Bimer, R. B. Wehrspohn, U. Goesele, and K. Busch, Adv. Mater. 13, 3776 (2001).Google Scholar
  12. 12.
    P. M. Petroff, A. Lorke, and A. Imamoglu, Physics Today 54, 46 (2001).CrossRefGoogle Scholar
  13. 13.
    R. Waser and D. M. Smyth, Ferroelectric Thin Films: Synthesis and Basic Properties, eds. C. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon & Breach, Amsterdam, 1996), pp.47–92.Google Scholar
  14. 14.
    A. J. Dekker, Phys. Rev. 94, 1179 (1954).CrossRefGoogle Scholar
  15. 15.
    B. Yu, C. Zhu, and F. Gan, J. Appl. Phys. 82, 4532 (1997).CrossRefGoogle Scholar
  16. 16.
    S. Kohiki, S. Takada, A. Shimizu, K. Yamada, and M. Mitone, J. Appl. Phys. 87, 474 (2000).CrossRefGoogle Scholar
  17. 17.
    J. F. Scott, J. Appl. Phys. 88, 6092 (2000); J. F. Scott, Proc. AMF-3 (Hong Kong, Dec. 2000); Ferroelectrics (in press, 2001).CrossRefGoogle Scholar
  18. 18.
    S. Kohiki et al., J. Appl. Phys. 88, 6092 (2000).CrossRefGoogle Scholar
  19. 19.
    W. Zhou, J. Sol. St. Chem. 101, 1 (1992); J. A. Switzer, M. G. Shumsky, and E. W. Bohannan, Science 284, 293-296 (1999).Google Scholar
  20. 20.
    M. Alexe, A. Gruverrnan, C. Harnagea, N. D. Zakharov, A. Pignolet, D. Hesse, and J. F. Scott, Appl. Phys. Lett. 75, 1158–60 (1999).CrossRefGoogle Scholar
  21. 21.
    A. Gruverman, Ferroelectrics (in press 2001); A. Gruverrnan, O. Auciello, and H. Tokumoto, Appl. Phys. Lett. 69, 3191–3 (1996).CrossRefGoogle Scholar
  22. 22.
    J. Maier, Electrochemistry 68, 395 (2000).Google Scholar
  23. 23.
    J. Maier, Sol. St. Ionics 131, 13 (2000).CrossRefGoogle Scholar
  24. 24.
    J. Maier, J. Jamnik, and M. Leonhardt, Sol. St. Ionics 129, 25 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Zafar et al., J. Appl. Phys. 82, 4469 (1997); J. F. Scott, Ferroelec. 232, 25-34 (1999).CrossRefGoogle Scholar
  26. 26.
    A. Gruverrnan, A. Kholkin, A. Kingon, and H. Tokumoto, Appl. Phys. Lett. 78, 2751 (2001) and in ISIF — Colorado Springs, March 2001 (Integ. Ferroelec., in press).CrossRefGoogle Scholar
  27. 27.
    D. Takashima, IEICE Trans. Electron. E84-C, 747 (2001); this special issue gives an outstanding coverage and comparison of all types of nonvolatile memories; 0.3-micron Ir/PZT/Ir cells on W plugs: T. S. Moise, S. R. Summerfelt, G. Xing, L. Colombo, and T. Sakoda, IEDM Tech. Dig. 941 (1999); 0.07-micron cells: M. Alexe, C. Harnagea, D. Hesse, and U. Goesele, Integ. Ferroelec. 27,104 (2000).Google Scholar
  28. 28.
    F. Miranda, Integ. Ferroelec. (in press, 2001).Google Scholar
  29. 29.
    M. Alexe, C. Harnagea, W. Erfurth, D. Hesse, and U. Goesele, Appl. Phys. A70, 247–251 (2000); M. Alexe et al., Ferroelectrics (in press 2(01); M. Alexe and J. F. Scott, J. Eur. Ceram. Soc. (in press 2002)..Google Scholar
  30. 30.
    C. S. Ganpule, R. Ramesh, et al. (private communication).Google Scholar
  31. 31.
    Experiment: J. F. Scott, M. Alexe, N. D. Zakharov, A. Piguolet, C. Curran, and D. Hesse, Integ. Ferroelec. 21, 1 (1998); Theory: Shchukin et al., Phys. Rev. Lett. (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • J. F. Scott
    • 1
  1. 1.Symetrix Centre for Ferroics, Earth Sciences DepartmentCambridge UniversityUK

Personalised recommendations