Quantum Dot Semiconductor Lasers

  • V. M. Ustinov
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)


Development of advanced active regions for semiconductor diode lasers was the main direction which gave the largest contribution to enormous progress of diode lasers in various applications. With each new approach in device design, and fabrication technology, the properties of lasers greatly improved and, in turn, gave a strong push to the development of new systems and, sometimes, new directions and branches of industry. The first step was the proposal of current-injection lasers and their realization. The decisive step for the beginning of the use of diode lasers in real industrial applications was the concept of double heterostructures which offered a possibility to fabricate devices, with low threshold, current density allowing continuous wave operation at room temperature. Further progress was associated with the use of effects of size quantization in semiconductor heterostructures. Fig.1 illustrates the progress of semiconductor diode lasers with reducing the dimensionality of the active region when the threshold current density is taken as the Figure of merit [1]. By threshold current density we mean the minimum current density of a semiconductor diode laser necessary to reach the population inversion and to overcome internal and external losses and to achieve modal gain.


Quantum Well Threshold Current Density Internal Loss Semiconductor Diode Laser Differential Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ledentsov, N.N, Grundmann, M, Heinrichsdorf, F, et al, (2000) Quantum-Dot Heterostructure Lasers, IEEE J. Sel. Topics on Quantum Electronics 6,439–451CrossRefGoogle Scholar
  2. 2.
    Dingle, R and Henry, C.H (1976) Quantum Effects in Heterostructure Lasers, U.S.Patent 3982207 Google Scholar
  3. 3.
    Bimberg, D, Grundmann, M, Ledentsov, N.N (1999) Quantum Dot Heterostructures, Chichester: WileyGoogle Scholar
  4. 4.
    Alferov, Zh.I (1996) The history and future of semiconductor heterostructures, in Proc. 99-th Nobel Symp. Google Scholar
  5. 5.
    Goldstein, L, Glas, F, Marzin, J.Y, et al, (1985) Growth by molecular beam epitaxy and characterization of InAs/GaAs strained layer superlattices, Appi. Phys. Lett. 47, 1099–1101CrossRefGoogle Scholar
  6. 6.
    Ruvimov, S.S, Werner, P, Scheerschmidt, K, et al, (1995) Structural characterization of (In,Ga)As quantum dots in a GaAs matrix, Phys. Rev. B 51, 14766–14769.CrossRefGoogle Scholar
  7. 7.
    Ustinov, V.M, Egorov, A.Yu, Zhukov, A.E, et al, (1996) Formation of stacked self-assembled InAs quantum dots in GaAs matrix for laser applications, Mat. Res. Soc. Symp. Proc. 417, 141–146.CrossRefGoogle Scholar
  8. 8.
    Kovsh, A.R, Zhukov, A.E, Egorov, A.Yu, et al, MBE growth and characterization of composite InAlAs/In(Ga)As vertically aligned quantum dots, Mat. Res. Soc. Symp. Proc. 571,109–114.Google Scholar
  9. 9.
    Mikhrin, S.S, Zhukov, A.E, Kovsh, A.R, et al, (2000) 0.94 micron diode lasers based on Stranski-Krastanow and submonolayer quantum dots, Semicon. Sci. Technol. 15, 1061–1064CrossRefGoogle Scholar
  10. 10.
    Egorov, A.Yu, Zhukov, A.E, Kop’ev, P.S, et al, (1996) Optical emission range of structures with strained InAs quantum dots in GaAs, Semicond. 30, 707–710.Google Scholar
  11. 11.
    Ustinov, V.M, Maleev, N.A, Zhukov, A.E, (1999) InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 mm, Appi. Phys. Lett. 74,2815–2817.CrossRefGoogle Scholar
  12. 12.
    Ustinov, V.M, Zhukov, A.E, Kovsh, A.R, et al, (2000) Long-wavelength emission from self-organized InAs quantum on GaAs substrates, Microelectronics Journal 31, 1–7.CrossRefGoogle Scholar
  13. 13.
    Zhukov, A.E, Kovsh, A.R, Ustinov, V.M, (1999) Gain characteristics of quantum dot injection lasers, Semicond. Sci. Technol. 14,118–123.CrossRefGoogle Scholar
  14. 14.
    Kovsh, A.R, Zhukov, A.E, Livshits, D.A, (1999) 3.5 W CW operation of a quantum dot laser, Electron. Lett. 35,1161–1163.CrossRefGoogle Scholar
  15. 15.
    Zhukov, A.E, Kovsh, A.R, Ustinov, V.M, (1999) Continuous-wave operation of long-wavelength quantum dot diode laser on a GaAs substrate, IEEE Photonics Technology Letters 11,1845–1847CrossRefGoogle Scholar
  16. 16.
    Ustinov, V.M and Zhukov, A.E, (2000), GaAs-based long-wavelength lasers, Semicond. Sci. Technol. 15,R41–R54CrossRefGoogle Scholar
  17. 17.
    Liu, G.T, Li, H, Malloy K.J, et al, Extremely low room-temperature threshold current density diode lasers using InAs dots in InGaAs quantum well, Electron. Lett. 35,1163–1164Google Scholar
  18. 18.
    Zhukov, A.E, Kovsh, A.R, Maleev, N.A, et al, Long-wavelength lasing from multiply stacked InAs/InGaAs quantum dots on GaAs substrates, Appi. Phys. Lett. 75,1926–1928Google Scholar
  19. 19.
    Zhukov, A.E, Kovsh, A.R, Mikhrin, S.S, (1999) 3.9 W CW power from sub-monolayer quantum dot diode laser, Electron. Lett. 35, 1845–1846CrossRefGoogle Scholar
  20. 20.
    Smowton, P.M and Blood, P, (1997) The differential efficiency of quantum well lasers, IEEE J. Selected Topics in Quantum Electron. 3 491–498.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • V. M. Ustinov
    • 1
  1. 1.A. F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations