Electroplating and Electroless Deposition of Nanostructured Magnetic Thin Films

  • Nicolae Sulitanu
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)


The dawn of nanoscale science can be traced to a now classic talk that Richard Feynman gave on December 29th, 1959 at the annual meeting of the American Physical Society at the California Institute of Technology. In this lecture, Feynman suggested that there exists no fundamental reason to prevent the controlled manipulation of matter at the scale of individual atoms and molecules. Twenty one years later, Eigler and coworkers [1] constructed the first man-made object atom-by-atom with the aid of a scanning tunneling microscope. This was just 7000 years after Democritus postulated atoms to be the fundamental building blocks of the visible world. A nanometer is thus the space occupied by 3–4 atoms placed end-to-end. Advances in the field have been accelerated following the invention by Binnig and Rohrer in the early 1980s of the scanning tunneling microscope [2]. This microscope, and its derivates, allows us to image and manipulate atoms, molecules and clusters in a controlled manner. It is this tool, which allows us, in a nano-workshop, to create and characterize individual structures whose dimensions are of the order of nanometers. It is forecast that many practical applications of nanotechnology will utilize massive arrays of such fabrication tools, combined with self-assembly techniques borrowed from nature and the biosciences, to create large numbers of nanoscale objects and structures. As opposed to the microscale, the nanoscale is not just another step towards miniaturization, but is a qualitatively new scale. Here quantum and size phenomena are allowed to manifest themselves either at a purely quantum level or in a certain “admixture” of quantum and classical components. At the foundation of nanosystems lie the quantum manifestations of matter that become relevant and measurable. Consequently, instead of being a limitation or an elusive frontier, quantum phenomena have become the crucial enabling tool for nanotechnology [3].


Hysteresis Loop Saturation Magnetization Transmission Electron Microscopy Micrograph Film Plane Electroless Plating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Timp, G (1999) Nanotechnology, American Institute of Physics Press, New York.CrossRefGoogle Scholar
  2. 2.
    Binning, G, Rohrer, H, (1982) Scanning tunneling microscopy, Helvetica Physica Acta, Basel 55, S. 726–735.Google Scholar
  3. 3.
    Noid, D.N., R. F Tuzun, R.F, Sumpter, B.G (1997) On the Importance of Quantum Mechanics for Nanotechnology, Nanotechnology 8,119–126.CrossRefGoogle Scholar
  4. 4.
    Himpsel, F.J, Ortega, J.E, Mankey, G.J, Willis, R.F (1998) Magnetic nanostructures, Adv. Phys. 47, 511–597.CrossRefGoogle Scholar
  5. 5.
    Wang, L.W, Liu, Y, Zhang, Z (2002) Handbook of Nanophase and Nanostructured Materials, Kluwers Academic Publishers, Dordrecht.Google Scholar
  6. 6.
    Paanovic, M, Schesinger, M (1998) Fundamentals of Electrochemical Depositions, John Wiley, New York.Google Scholar
  7. 7.
    Mallory, G, Hadju, J.B (1990) Electroless Plating: Fundaments and Applications, AESF Orlando, Florida.Google Scholar
  8. 8.
    Watanable, T (1994) Formation of metastable phases by the plating method, Mater Sci. Eng. A179/A180,193–197.Google Scholar
  9. 9.
    Kazeminezhad, L, Blythe, H.J, Schwarzacher, W (2001) Alloys by precision electrodeposition, Appl. Phys. Lett. 78, 1014–1016.CrossRefGoogle Scholar
  10. 10.
    Schindler, W, Hofmann, D, Kirshner, J (2000) Nanoscale electrodeposition: a new route to magnetic nanostructures?, J. Appl. Phys. 87, 7007–7009.CrossRefGoogle Scholar
  11. 11.
    Gleiter, H (2001) Tuning the electronic structure of solids by means of nanometer-sized microstructures, Scripta Mater. 44,1161–1168.CrossRefGoogle Scholar
  12. 12.
    Osaka, T (2000) Electrodeposition of highly functional thin films for magnetic recording devices of the next century, Electrochimica Acta 45, 3311–3321.CrossRefGoogle Scholar
  13. 13.
    Sulitanu, N (2000) Microstructure and stripe domains in Ni-S ferromagnetic thin films, J. Magn. Magn. Mater. 214,176–184.CrossRefGoogle Scholar
  14. 14.
    Myung, N.V, Nobe, K (2001) Electrodeposited iron group thin-film alloys, J. Electrochem. Soc. 148,C136–C144.CrossRefGoogle Scholar
  15. 15.
    Attenborough, K (2001) J.P. Celis (2001) Properties and applications of electrodeposited magnetic materials, Galvanotechnik 92, 488–494.Google Scholar
  16. 16.
    Sulitanu, N (2002) Electrochemical deposition of novel nanostructured magnetic thin films for advanced applications, Mater. Sci. Eng. B95, 230–235.CrossRefGoogle Scholar
  17. 17.
    Tumanski, S (2001) Thin Film Magnetoresistive Sensors, Instiute of Physics Publishers, London.CrossRefGoogle Scholar
  18. 18.
    Schindler, W, Koop, Th, Hofmann, D, Kirschner, J (1998) Reversible electrodeposition of ultrathin magnetic Co films, IEEE Trans. Mag. 34, 963–967.CrossRefGoogle Scholar
  19. 19.
    Cziraki, A, Fogarassy, B, Gerocs, I, Toth-Kadar, E and Bakonyi, I (1994) Microstructure and growth of electrodeposited nanocrystalline nickel foils, J. Mater. Sci. 29,4771–4777.CrossRefGoogle Scholar
  20. 20.
    Erb, U, Palumbo, G, Zugic, R, Aust, K.T (1996) Structure-property relationships for electrodeposited nanocrystals, in C. Suryanaryana, J. Singh and F.H. Froes (eds.), Processing and Properties of Nanocrystalline Materials, The Minerals, Metals & Materials, Society Press, Warrendale, Pennsylvania pp. 93–122.Google Scholar
  21. 21.
    Brenner, A (1963) Electrodeposition of Alloys. Principle and Practice, Academic Press, New York.Google Scholar
  22. 22.
    Gawrilov, G.G (1979) Chemical (Electroless) Nickel-Plating, Portcullis Press, Redhill, UK.Google Scholar
  23. 23.
    Schwartzacher, W (1999) Metal nanostructures. A new class of electronic devices, Electrochem. Soc. Interface 8, 18–22.Google Scholar
  24. 24.
    Searson, P.C, Cammarata, R.C, Chien, C.L (1995) Electrochemical processing of nanostructured materials, in H. Merchant (ed.) Defect Structure, Morphology and Properties of Deposits, The Minerals, Metals & Materials Society Press, Warrendale, Pennsylvania pp. 345–357.Google Scholar
  25. 25.
    Cavallotti, P.L, Lecis, N, Fauser, H, Zielonka, A, Celis, J.P, Wouters, G, Machado da Silva, J, Brochado Oliviera, J.M, Sa, M.A (1998) Electrodeposition of magnetic multilaers, Surf. Coat. Techn. 105, 232–239.CrossRefGoogle Scholar
  26. 26.
    Jansen, R Van’t Erve, O.M.J, Kim, S.D, Vlutters, R, Anil Kumar, P.S (2001) The spin-valve transistor: fabrication, characterization, and physics, J. Appl. Phys. 89, 7431–7436.CrossRefGoogle Scholar
  27. 27.
    Budevski, E, Staikov, G, Lorenz, W.J (1996) Electrochemical Phase Formation and Growth, VHC, Weinheim.CrossRefGoogle Scholar
  28. 28.
    Perez, L, Attenborough, K, De Boek, J, Celis, J.P, Aroca, C, Sanchez, P, Lopez, E, Sanchez, M.C (2002) Magnetic properties of CoNiFe alloys electrodeposited under potential and current control conditions, J. Magn. Magn. Mater. 242-245, Part I, 163–165.CrossRefGoogle Scholar
  29. 29.
    Saitou, M, Oshikawa, W, Mori, M, Makabe, A (2001) Surface roughening in the growth of direct current or pulse current electrodeposited nickel thin films, J. Electrochem. Soc. 148, C780–C783.CrossRefGoogle Scholar
  30. 30.
    Natter, H. M, Hempelmann, R (1996) Nanocrystalline copper by pulsed electrodeposition: the effect of organic additives, bath temperature, andpH, J.Phys. Chem. 100, 19525–19532.CrossRefGoogle Scholar
  31. 31.
    Chassaing, E (2001) Effect of organic additives on the electrocrystallization and the magnetoresistance of Cu-Co multilayers, J. Electrochem. Soc. 148, C690–C694.CrossRefGoogle Scholar
  32. 32.
    Osaka, T, Sawaguchi, T, Mizutani, F, Yokoshima, T, Takai, M, Okinaka, Y, (1999) Effects of saccharin and thiourea on sulfur inclusion and coercivity of electroplated soft magnetic CoNiFe film, J. Electrochem. Soc. 146, 3295–3299.CrossRefGoogle Scholar
  33. 33.
    Peter, L, Kupay, Z, Cziraki, A, Padar, I, Toth, I, Bakonyi, I (2001) Additive effects in multilayer electrodeposition: properties of Co-Cu/Cu multilayers deposited with NaCl additive, J. Phys. Chem. B 105, 10867–10873.CrossRefGoogle Scholar
  34. 34.
    Takai, M, Kondo, A, Mera, F, Kaseda, M, Osaka, T (1998) Electrodeposition of soft magnetic Ni-Fe-basedfilm with high resistivity, J. Surf. Finish. Soc. Jpn. 49, 292–296.CrossRefGoogle Scholar
  35. 35.
    Tabakovic, I, Inturi, V, Riemer, S (2002) Composition, structure, stress, and coercivity of electrodeposited soft magnetic CoNeFe films. Thickness and substrate dependence, J. Electrochem. Soc. 149,C18–C20.CrossRefGoogle Scholar
  36. 36.
    Sulitanu, N (2000) Electrolessly deposited NiCoWS alloy films for perpendicular recording media, Bull. Polytechn. Inst. Jassy 46 (fasc. 3-4), 53–56.Google Scholar
  37. 37.
    Zhang, J, Chow, G.M (2000) Electroless polyoldeposition and magnetic properties of nanostructured Ni50Co so films, J. Appi. Phys. 88, 2125–2129.CrossRefGoogle Scholar
  38. 38.
    Kakuno, E.M, Da Silva, R.C, Mattoso, N, Schreiner, W.H, Mosca, D.H, Teixeira, S.R (1999) Giant magnetoresistance in electrodeposited Co 81Fe13/Cu compositionally modulated alloys, J. Phys. D: Appi. Phys. 32, 1209–1213.CrossRefGoogle Scholar
  39. 39.
    Fenineche, N, Chaze, A.M, Coddet, C (1996) Effect of pH and current density on the magnetic properties of electrodeposited Co-Ni-P alloys, Surf. Coat. Technol. 88, 264–268.CrossRefGoogle Scholar
  40. 40.
    Alper, M (1995) Electrodeposited Magnetic Superlattices, Thesis, University of Bristol, UK.Google Scholar
  41. 41.
    Sulitanu, N (2000) Microstructure and magnetic properties of electrolessly deposited Co-S thin films, Mater. Sci. Eng. B77, 27–32.CrossRefGoogle Scholar
  42. 42.
    Coey, J.M, Hinds, G (2001) Magnetic electrodeposition, J. Alloy. Comp. 326, 238–245.CrossRefGoogle Scholar
  43. 43.
    Coey, J.M, Hinds, G, O’Reilly, C, Ni Mhiochain, T.R (2001) Magnetic field effects on electrodeposition, Mater. Sci. Forum 373–376, 1–8.CrossRefGoogle Scholar
  44. 44.
    Sulitanu, N.D (1992) A suitable methodfor obtaining Ni-W thin magnetic films, Mater. Lett. 14, 295–297.CrossRefGoogle Scholar
  45. 45.
    Homma, T, Osaka, T, Yamazaki, Y, Namikawa, T (1995) Correlation between magnetic properties and phase-separated microstructure of electroless CoNiP perpendicular magnetic recording media, Script. Metall. Mater. 33, 1569–1573.CrossRefGoogle Scholar
  46. 46.
    Krishnan, K (1999) Magnetism and microstructure: the role of interfaces, Acta Mater. 47, 4233–4244.CrossRefGoogle Scholar
  47. 47.
    Sulitanu N (1992) Automatic torque magnetometer for thin ferromagnetic, Stud. Res. Phys. 44 699–709.Google Scholar
  48. 48.
    Chikazumi, S (1997) Physics of Ferromagnetism, Clarendon Press, Oxford, p.450 & p. 509.Google Scholar
  49. 49.
    Sulitanu, N (2001) Structural origin ofperpendicular magnetic anisotropy in Ni-W thin films, J. Magn. Magn. Mater. 231, 85–93.CrossRefGoogle Scholar
  50. 50.
    Grundy, P.J (1998) Thin film magnetic recording media, J. Phys. D: Appi. Phys. 31, 2975–2990.CrossRefGoogle Scholar
  51. 51.
    Maeda, Y, Rogers, D.J, Song, O, Takei, K, Okhubo, T, Hirono, S, Suzuki, J, Morii, Y (1997) Magnetic microstructures produced by compositional separation in Co-Cr based alloy thin films, IEEE Trans. Magn. 33, 879–884.CrossRefGoogle Scholar
  52. 52.
    Kechrakos, D, Trohidou, K.N (1998) Effects of dipolar interactions on the magnetic properties of granular solids, J. Magn. Magn. Mater. 177-181, 943–944.CrossRefGoogle Scholar
  53. 53.
    Cowbum, R.P, Adeyeye, A.O, Welland, M.E (1999) Controlling magnetic ordering in coupled nanomagnet arrays, New J. Phys. 1, 16.1–16.9.Google Scholar
  54. 54.
    Franco, V, Battle, X, Labarta, A, O’Grady, K, (2000) The nature of magnetic interactions in CoFe-Ag (Cu) granular thin films, J. Phys. D: Appi. Phys. 33, 609.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Nicolae Sulitanu
    • 1
  1. 1.Department of Solid State Physics, Faculty of Physics“Al. I. Cuza” UniversityIasi, RomaniaItaly

Personalised recommendations