Effects of Interfaces on the Properties of Nanostructured Ni-[Cu(II)-C-O] and CoCrPt Films

  • G. M. Chow
Conference paper
Part of the NATO Science Series book series (NAII, volume 128)


The control of the composition, structure (long range and short range orders), texture, and interfaces is important in order to control the magnetic properties of nanostructured films. In this paper an overview of some of our recent work on the effects of interphase interface and composition of textured long range order on the properties of nanostructured Ni-[Cu(II)-C-O] and CoCrPt films is presented.


Bragg Peak Nanostructured Film Polyol Process Interphase Interface Local Atomic Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chien, C.L (1995) Magnetism and giant magnetotransport properties in granular solids, Ann. Rev. Mater. Sci. 25,129–160CrossRefGoogle Scholar
  2. 2.
    Liou, S.H, Malhotra, S, Shan, Z, Sellmyer, D.J, Nafis, S, Woolam, J.A, Reed, C.P, DeAngelis, R. J and Chow, G.M (1991), The process-controlled magnetic properties of nanostructured Co/Ag composite films, J. Appl. Phys. 70,5882–5884.CrossRefGoogle Scholar
  3. 3.
    Childress, J. R and Chien, C.L (1991) Granular cobalt in a metallic matrix, J. Appl Phys. 70,5885–5887.CrossRefGoogle Scholar
  4. 4.
    Fiévet, F, Lagier, J.P, and Figlarz, M (1989) Preparing mndisperse metal powders in micrometer and submicrometer sizes by the plyl process, Mater. Res. Sc. Bull. December, p.29–34.Google Scholar
  5. 5.
    Viau, G, Ravel, F, Acher., Fiévet-Vincent, F, and Fiévet, F (1994) Preparation and microwave characterization f spherical and monodisperse C20Ni80 particles, J. Appl Phys. 76,6570–6572.CrossRefGoogle Scholar
  6. 6.
    Chw, G.M, Kurihara, L.K, Kemner, K.M, Schen, P.E, Elam, W.T, Ervin, A, Keller, S, Zhang, Y.D, Budnick, J, and Ambrse, T (1995) Structural, morphological and magnetic study f nanocrystalline cobaltcopper powders synthesized by the plyl process, J. Mater. Res. 10,1546–1554.CrossRefGoogle Scholar
  7. 7.
    Viau G, Fiévet-Vincent, F, and Fiévet, F (1996) Nucleation and growth f bimetallic CNi and FeNi monodisperse particles prepared in plyls, Slid State Inics 84,259–270.CrossRefGoogle Scholar
  8. 8.
    Kurihara, L.K, Chw, G.M, and Schen, P.E (1995) Nanocrystalline metallic powders and films produced by the plyl method, Nanstruc. Mater. 5,607–613.CrossRefGoogle Scholar
  9. 9.
    Chw, G.M, Kurihara, L.K, Ma, D, Feng, C.R, Schen, P.E, and Martinez-Miranda, L.J (1997) Alternative approach t electroless Cu metallization f A1N by a nonaqueous plyl process, Appl Phys. Lett. 70,2315–2317.CrossRefGoogle Scholar
  10. 10.
    Martinez-Miranda, L.J, Li, Y, Chw, G.M, Kurihara, L.K (1999) A depth study of the structure and strain distribution in chemically grown Cu films n A1N, Nanstruc. Mater. 12,653–656.CrossRefGoogle Scholar
  11. 11.
    Chw, G.M, Ding. J, Zhang, J, Lee, K.Y and Surani, D (1999) Magnetic and hardness properties f nanostructured Ni-C films deposited by a non-aqueous electroless method, Appl Phys. Lett. 74,1889–1891.CrossRefGoogle Scholar
  12. 12.
    Zhang, J, Chw, G.M, Lawrence, S.H and Feng, C.R (2000) Nanstructured Ni films by plyl electroless depsitin, Mater. Phys. Mech. 1,11–14.Google Scholar
  13. 13.
    Zhang, J and Chw, G.M (2000) Electrless plyl depsitin and magnetic properties f nanstructured Ni50C50 films, J. Appl. Phys. 88,2125–2129.CrossRefGoogle Scholar
  14. 14.
    Chw, G.M, Li, Y.Y and Hwu, Y.K, (2000) Mechanical and magnetic properties f plyl electrdepsited NiC films, Mater. Phys. Mech. 1,67–72.Google Scholar
  15. 15.
    Chw, G.M, Zhang, J, Li, Y.Y, Ding, J and Gh, W.C, (2001) Electrless plyl synthesis and properties f nanostructured Nix C100-x, Mater. Sci. Eng. A304-306,194–199.Google Scholar
  16. 16.
    Blackwd, D. J, Li, Y. Y and Chw, G. M (2002) Plyl electroless and electrodepositin f nanostructured Ni-C films and powders, J. Electrchem. Sc. 149, D27–D34.CrossRefGoogle Scholar
  17. 17.
    Yin, H, Chan, H.S and Chow, G.M (2001) Nanostructured iron-nickel thin films synthesized by electroless plyl deposition, Mater. Phys. Mech. 4,56–61.Google Scholar
  18. 18.
    Yin, H and Chw, G.M (2002) Anmalus electrless plyl depsitin f FeNi powders and films, J. Electrchem. Sc. 149, C68–C73.CrossRefGoogle Scholar
  19. 19.
    Chw, G.M, Ding, J and Zhang, J, (2002) Enhanced magnetizatin f nanstructured granular Ni/[Cu (II)-C-] films, Appl. Phys. Lett. 80,1028–1030.CrossRefGoogle Scholar
  20. 20.
    Kittel, C (1996) Intrductin t Slid State Physics, 7th ed., Jhn Wiley & Sns, USA, p. 426.Google Scholar
  21. 21.
    Kahn,. (1993) Mlecular Magnetism, VCH Publisher, New Yrk.Google Scholar
  22. 22.
    Yang, X.D, Si, L, Ding, J, Ranfrd, J.D and Vittal, J. J (2001) Cpper cmplex with a magnetic rdering temperature abve 400 K, Appl. Phys. Lett. 78,3502–3504.CrossRefGoogle Scholar
  23. 23.
    uchi, K. and Iwasaki, S (1985) properties f high rate sputtered perpendicular recrding media, J. Appl. Phys. 57,4013–4015.CrossRefGoogle Scholar
  24. 24.
    Chen, T, Charlan, G.B and Yamashita, T (1983) A cmparisn f the uniaxial anistrpy in sputtered C-Re and C-Cr perpendicular recrding media, J. Appl. Phys. 54,5103–5111.CrossRefGoogle Scholar
  25. 25.
    Haines, W. G (1984) Effect of atomic distribution n the saturation magnetization f cobalt-Chromium films, J. Appl Phys. 55,2263–2265.CrossRefGoogle Scholar
  26. 26.
    Smits, J.W, Luitjens, S.B, and den Breder, F.J.A (1984) Evidence fr micorstructural inhomgeneity in sputtered C-Cr thin films, J. Appl Phys. 55,2260–2262.CrossRefGoogle Scholar
  27. 27.
    Maeda, Y and Takahashi, M (1989) Direct observation f the segregated microstructures within C-Cr film grains, Jap. J. Appl Phys. 28, L248–L251.CrossRefGoogle Scholar
  28. 28.
    Hirayama, Y, Futamt, M, Kimt, K and Usami, K (1996) Compositional microstructures f C-Cr ally perpendicular magnetic recording media, IEEE. Trans. Magn. 32,3807–3809.CrossRefGoogle Scholar
  29. 29.
    Michaelsen, C (1995) n the structure and homgeneity f slid solutions: the limits f conventional x-ray diffraction, Phil Mag. A. 72, 813–828.CrossRefGoogle Scholar
  30. 30.
    Chw, G.M, Gh, W.C, Hwu, Y.K, Ch, T.S, Je, J.H, Lee, H.H, Kang, H.C, Nh, D.Y, Lin, C.K, and Chang, W.D (1999) Structure determination f nanostructured Ni-C films by anomalous x-ray scattering, Appl Phys. Lett. 75,2503–2505.CrossRefGoogle Scholar
  31. 31.
    Jayaganthan, R and Chow, G.M (2002) Thermodynamics of surface compositional segregation in Ni-Co nanoparticles, Mater. Sci. Eng. B95,116–123.CrossRefGoogle Scholar
  32. 32.
    Chow, G.M, Sun, C.J, Soo, E.W, Wang, J.P, Lee, H.H Noh, D.Y Cho, T.S, Je, J.H, Hwu, Y.K, (2002) Structural study of CoCrPt films by anomalous x-ray scattering and extended x-ray absorption fine structure, Appl Phys. Lett. 80,1607–1609.CrossRefGoogle Scholar
  33. 33.
    Stragier, H, Cross, J.O, Rehr, J.J, Sorensen, L.B, Bouldin, C.E and Woicik, J.C (1992) Diffraction anomalous fine structure: a new x-ray structural technique, Phy. Rev. Lett. 69,3064–3067.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • G. M. Chow
    • 1
  1. 1.Department of Materials ScienceNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations